The synthesis of (S)-2-(3-arylacrylamido)-3-{4-[2-(5-methyl-2-phenyloxazol-4-yl)etho- xy]phenyl}propanoic acids is described. Their structures were confirmed by ^1H-NMR.
The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic ...The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.展开更多
A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- no...A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- nous octoate as catalyst. The copolymers were characterized by means of ~H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight rela- tive molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.展开更多
Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on m...Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on metabolic and func- tional specialization of the cell bodies versus the axon terminals, the level and disposition of dopamine, its metabolites and enzymes are different in both regions and are likely to be affected differently in PD. We examined changes in the midbrain dopamine system following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to test the hypothesis that a predisposing/sensitization stage and a inducing/precipitating stage underlie PD. Pregnant mice were treated with a low dose of MPTP during gestation days 8 - 12 to model the predisposing/sensitization stage, by interrupting the fetal mid- brain dopamine system during its neurogenesis. For the inducing/precipitating stage, the 12-weeks offspring were ad- ministered MPTP. The prenatal-MPTP offspring appear normal, but midbrain dopamine, 3,4-di-hydroxy-phenyl-acetic- acid, 3-methoxytyramine, tyrosine-hydroxylase and L-aromatic-amino-acid-decarboxylase, were reduced by 49.6%, 48%, 54%, 20.9% and 25%. Postnatal-MPTP of 10, 20, 30 mg/kg administered to the prenatal-PBS vs prenatal-MPTP offspring reduced midbrain dopamine by 43.6%, 47.2%, 70.3% vs 85.4%, 89.1%, 95.2%;tyrosine-hydroxylase by 30%, 63%, 81% vs 30.7%, 70.4%, 91.4%;L-aromatic-amino-acid-decarboxylase by 0%, 2%, 40% vs 32%, 40%, 58%. The prenatal-MPTP may render the DA system sensitive by causing sub-threshold reduction of DA, its metabolites and en- zymes, enabling postnatal-MPTP to reduce dopamine above the 70% - 80% PD-inducing threshold. Thus, the study may produce a prenatal predisposing/sensitization and postnatal inducing/precipitation model of PD. It also indicates that some cases of PD may have a fetal basis, in which sub-threshold nigrostriatal impairments occur early in life and PD-symptoms are induced during aging by further insults to the dopaminergic system that would not cause PD symptoms in normal indi-viduals.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
An efficient three-component synthesis of 6-amino-4-aryl-5-cyano-3-metriyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles via a reaction between 3-methyl-1-phenyl-2-pyrazolin-5-one,aromatic aldehydes and malononitrile usi...An efficient three-component synthesis of 6-amino-4-aryl-5-cyano-3-metriyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles via a reaction between 3-methyl-1-phenyl-2-pyrazolin-5-one,aromatic aldehydes and malononitrile using tungstate sulfuric acid as a catalyst was described.Mild conditions,good to excellent yields,easily available catalyst and easy work-up are the key features of this method.展开更多
基金This work was supposed by the National High Technology Research and Development Program of China(863 project:2003AA235010).
文摘The synthesis of (S)-2-(3-arylacrylamido)-3-{4-[2-(5-methyl-2-phenyloxazol-4-yl)etho- xy]phenyl}propanoic acids is described. Their structures were confirmed by ^1H-NMR.
基金This work was sponsored by the National Key Technologies R & D Programs (No. 2004BA308A22-8)
文摘The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.
基金Supported by Chinese Program for New Century Excellent Talents in University "NCET",Ministry of Education of P.R. China(No.2008DFA51170)
文摘A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- nous octoate as catalyst. The copolymers were characterized by means of ~H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight rela- tive molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.
文摘Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on metabolic and func- tional specialization of the cell bodies versus the axon terminals, the level and disposition of dopamine, its metabolites and enzymes are different in both regions and are likely to be affected differently in PD. We examined changes in the midbrain dopamine system following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to test the hypothesis that a predisposing/sensitization stage and a inducing/precipitating stage underlie PD. Pregnant mice were treated with a low dose of MPTP during gestation days 8 - 12 to model the predisposing/sensitization stage, by interrupting the fetal mid- brain dopamine system during its neurogenesis. For the inducing/precipitating stage, the 12-weeks offspring were ad- ministered MPTP. The prenatal-MPTP offspring appear normal, but midbrain dopamine, 3,4-di-hydroxy-phenyl-acetic- acid, 3-methoxytyramine, tyrosine-hydroxylase and L-aromatic-amino-acid-decarboxylase, were reduced by 49.6%, 48%, 54%, 20.9% and 25%. Postnatal-MPTP of 10, 20, 30 mg/kg administered to the prenatal-PBS vs prenatal-MPTP offspring reduced midbrain dopamine by 43.6%, 47.2%, 70.3% vs 85.4%, 89.1%, 95.2%;tyrosine-hydroxylase by 30%, 63%, 81% vs 30.7%, 70.4%, 91.4%;L-aromatic-amino-acid-decarboxylase by 0%, 2%, 40% vs 32%, 40%, 58%. The prenatal-MPTP may render the DA system sensitive by causing sub-threshold reduction of DA, its metabolites and en- zymes, enabling postnatal-MPTP to reduce dopamine above the 70% - 80% PD-inducing threshold. Thus, the study may produce a prenatal predisposing/sensitization and postnatal inducing/precipitation model of PD. It also indicates that some cases of PD may have a fetal basis, in which sub-threshold nigrostriatal impairments occur early in life and PD-symptoms are induced during aging by further insults to the dopaminergic system that would not cause PD symptoms in normal indi-viduals.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.
文摘An efficient three-component synthesis of 6-amino-4-aryl-5-cyano-3-metriyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles via a reaction between 3-methyl-1-phenyl-2-pyrazolin-5-one,aromatic aldehydes and malononitrile using tungstate sulfuric acid as a catalyst was described.Mild conditions,good to excellent yields,easily available catalyst and easy work-up are the key features of this method.