To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are...To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are designed and analyzed by using density functional theory(DFT)calculations at the B3LYP/6-311G**level of theory.The molecular heats of formation(HOF),electronic structures,impact sensitivity(H_(50)),oxygen balance(OB)and density(ρ)are investigated by isodesmic reaction method and physicochemical formulas.Furthermore,the detonation velocity(D)and detonation pressure(P)are calculated to study the detonation performance by Kamlet-Jacobs(K-J)equation.These results show that new molecule J(H_(50)=36.9 cm,ρ=1.90g/cm^(3),Q=1912.46 cal/g,P=37.82 GPa,D=9.22 km/s,OB=0.00),compound A(H_(50)=27.9 cm,ρ=1.93 g/cm^(3),Q=1612.93 cal/g,P=38.90 GPa,D=9.19 km/s)and compound H(H_(50)=37.3 cm,ρ=1.97 g/cm^(3),Q=1505.06cal/g,P=37.20 GPa,D=9.01 km/s)present promising effects that are far better RDX and HMX as the high energy density materials.Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.展开更多
The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-...The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-311G^(**)level of theory.Based on the optimized molecular structures,the heats of formation(HOF)are obtained,and the electronic properties,density and molecular sensitivity by characteristic heights(H_(50))are discussed.Besides,the detonation performances(detonation velocity,detonation pressure)are estimated via Kamlet-Jacobs(K-J)formula.Compounds B(H50=29.4 cm,ρ=1.91 g/cm^(3),Q=1563.04 cal/g,P=36.05 GPa,D=8.95 km/s)and H(H_(50)=31.9 cm,ρ=1.80 g/cm^(3),Q=1610.09 cal/g,P=37.31 GPa,D=9.12 km/s)have positive HOFs and remarkable insensitivity and good detonation performance,strongly suggesting them as the acceptable new-type explosive.The initiating power surpasses conventional primary explosives,such as HMX.The outstanding detonation power of compounds B and H contributes to its future prospects as a promising green primary explosive.展开更多
基金Supported by theof Tangshan Normal University(2021B37and 2021B32)the School Fund of Shanxi Institute of Technology(2019004)the Fund of Shanxi Provincial Education Department(2019L0986)。
文摘To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are designed and analyzed by using density functional theory(DFT)calculations at the B3LYP/6-311G**level of theory.The molecular heats of formation(HOF),electronic structures,impact sensitivity(H_(50)),oxygen balance(OB)and density(ρ)are investigated by isodesmic reaction method and physicochemical formulas.Furthermore,the detonation velocity(D)and detonation pressure(P)are calculated to study the detonation performance by Kamlet-Jacobs(K-J)equation.These results show that new molecule J(H_(50)=36.9 cm,ρ=1.90g/cm^(3),Q=1912.46 cal/g,P=37.82 GPa,D=9.22 km/s,OB=0.00),compound A(H_(50)=27.9 cm,ρ=1.93 g/cm^(3),Q=1612.93 cal/g,P=38.90 GPa,D=9.19 km/s)and compound H(H_(50)=37.3 cm,ρ=1.97 g/cm^(3),Q=1505.06cal/g,P=37.20 GPa,D=9.01 km/s)present promising effects that are far better RDX and HMX as the high energy density materials.Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.
基金the of Tangshan Normal University(2021B37and 2021B32)the School Fund of Shanxi Institute of Technology(2019004)the Fund of Shanxi Provincial Education Department(2019L0986)。
文摘The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-311G^(**)level of theory.Based on the optimized molecular structures,the heats of formation(HOF)are obtained,and the electronic properties,density and molecular sensitivity by characteristic heights(H_(50))are discussed.Besides,the detonation performances(detonation velocity,detonation pressure)are estimated via Kamlet-Jacobs(K-J)formula.Compounds B(H50=29.4 cm,ρ=1.91 g/cm^(3),Q=1563.04 cal/g,P=36.05 GPa,D=8.95 km/s)and H(H_(50)=31.9 cm,ρ=1.80 g/cm^(3),Q=1610.09 cal/g,P=37.31 GPa,D=9.12 km/s)have positive HOFs and remarkable insensitivity and good detonation performance,strongly suggesting them as the acceptable new-type explosive.The initiating power surpasses conventional primary explosives,such as HMX.The outstanding detonation power of compounds B and H contributes to its future prospects as a promising green primary explosive.