Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed ...Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships.Falling ice crystals(approximately 40 000 particles) were measured with a two-dimensional video disdrometer(2DVD) during a winter experiment from 15 January to 9 April 2010.The fall velocity–diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements:the coefficients(exponents) for different snowflake types were 0.82(0.24) for dendrite,0.74(0.35) for plate,1.03(0.71) for needle,and 1.30(0.94) for graupel,respectively.These new relationships established in the present study(PS) were compared with those from two previous studies.Hydrometeor types were classified with the derived fall velocity–diameter relationships,and the classification algorithm was evaluated using 3 × 3 contingency tables for one rain–snow transition event and three snowfall events.The algorithm showed good performance for the transition event:the critical success indices(CSIs) were 0.89,0.61 and 0.71 for snow,wet-snow and rain,respectively.For snow events,the algorithm performance for dendrite and plate(CSIs = 1.0 and 1.0,respectively) was better than for needle and graupel(CSIs = 0.67 and 0.50,respectively).展开更多
A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experime...A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.展开更多
P2P traffic has always been a dominant portion of Internet traffic since its emergence in the late 1990s. The method used to accurately classify P2P traffic remains a key problem for Internet Service Producers (ISPs...P2P traffic has always been a dominant portion of Internet traffic since its emergence in the late 1990s. The method used to accurately classify P2P traffic remains a key problem for Internet Service Producers (ISPs) and network managers. This paper proposes a novel approach to the accurate classification of P2P traffic at a fine-grained level, which depends solely on the number of special flows during small time intervals. These special flows, named Clustering Flows (CFs), are de- fined as the most frequent and steady flows generated by P2P applications. Hence we are able to classify P2P applications by detecting tlle appearance of corresponding CFs. Com- pared to existing approaches, our classifier can realise high classification accuracy by ex- ploiting only several generic properties of flows, instead of extracting sophisticated fea- tures from host behaviours or transport layer data. We validate our framework on a large set of P2P traffic traces using a Support Vector Machine (SVM). Experimental results show that our approach correctly classifies P2P ap- plications with an average true positive rate of above 98% and a negligible false positive rate of about 0.01%.展开更多
The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper...The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.展开更多
Plant disease classification and prevention of spreading of the disease at earlier stages based on visual leaves symptoms and Pest recognition through deep learning-based image classification is in the forefront of re...Plant disease classification and prevention of spreading of the disease at earlier stages based on visual leaves symptoms and Pest recognition through deep learning-based image classification is in the forefront of research.To perform the investigation on Plant and pest classification,Transfer Learning(TL)approach is used on EfficientNet-V2.TL requires limited labelled data and shorter training time.However,the limitation of TL is the pre-trained model network’s topology is static and the knowledge acquired is detrimentally overwriting the old parameters.EfficientNet-V2 is a Convolutional Neural Network(CNN)model with significant high speed learning rates across variable sized datasets.The model employs a form of progressive learning mechanism which expands the network topology gradually over the course of training process improving the model’s learning capacity.This provides a better interpretability of the model’s understanding on the test domains.With these insights,our work investigates the effectiveness of EfficienetV2 model trained on a class imbalanced dataset for plant disease classification and pest recognition by means of combining TL and progressive learning approach.This Progressive Learning for TL(PL-TL)is used in our work consisting of 38 classes of PlantVillage dataset of crops and fruit species,5 classes of cassava leaf diseases and another dataset with around 102 classes of crop pest images downloaded from popular dataset platforms,though it is not a benchmark dataset.To test the predictability rate of the model in classifying leaf diseases with similar visual symptoms,Mix-up data augmentation technique is used at the ratio of 1:4 on corn and tomato classes which has high probability of misinterpretation of disease classes.Also,the paper compares the TL approach performed on the above mentioned three types of data set using well established CNN based Inceptionv3,and Vision Transformer a non-CNN model.It clearly depicts that EfficientNetV2 has an outstanding performance of 99.5%,97.5%,80.1%on Cassava,PlantVillage and IP102 datasets respectively at a faster rate irrespective of the data size and class distribution as compared to Inception-V3 and ViT models.The performance metrics in terms of accuracy,precision,f1-score is also studied.展开更多
This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences ...This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences according to both classification methods;and second the geomagnetic effect on foF2 diurnal variation profiles as defined for the equatorial latitudes. The occurrences of the different disturbed geomagnetic activities (recurrent activity (RA), shock activity (SA) and fluctuant activity (FA)) according to both classifications (ancient classification (AC) and new classification (NC)) have been studied at Dakar ionosonde station (Lat: 14.8°N;Long: 342.6°E). Regarding both classifications, the RA occurs more during the decreasing phase. And it’s observed that the RA occurs the most during the increasing phase for the AC and during the minimum phase for the NC. The maximum gap of occurrence (<img src="Edit_e4627ea9-9a9a-4473-9017-202d04a16377.bmp" alt="" /><span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">11.1%</span><span style="font-family:Verdana;"> (for the negative value which is observed during the increasing phase) and </span><span style="font-family:Verdana;">+16.74%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). The occurrence of the SA in relation with both classifications is the lowest during the minimum phase and the maximum occurrence is observed during the maximum and decreasing phases, for the AC, with a value close to </span><span style="font-family:Verdana;">37%</span><span style="font-family:Verdana;"> and for the NC at the maximum phase with a percentage of </span><span style="font-family:Verdana;">54.47%</span><span><span style="font-family:Verdana;">. The maximum gap of occurrence (</span><img src="Edit_20fa141b-ecee-4e06-8024-144ba0969395.bmp" alt="" /></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">17.85%</span><span style="font-family:Verdana;"> (for the negative value which is observed at maximum phase) and </span><span style="font-family:Verdana;">+13.53%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). For both classifications, the FA occurs the least during the minimum phase and the most during the maximum phase for the AC and at maximum and decreasing phases with percentage values of occurrence of roughly </span><span style="font-family:Verdana;">37%</span><span><span style="font-family:Verdana;"> for the NC. The maximum gap of occurrence (</span><img src="Edit_eecb8939-783e-4d43-b92c-80c528c1890b.bmp" alt="" /><span style="font-family:Verdana;"></span></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span>10% (for the negative value which is observed during the decreasing phase) and </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+20.11%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the maximum phase). foF2 diurnal profiles throughout solar cycle phases concerning the AC and the NC have been compared. The FA diurnal profiles don’t present a difference. The RA and the SA present a difference during minimum and increasing phases and the least at maximum and decreasing phases.</span></span></span>展开更多
How to quickly and accurately identify applications in VPN encrypted tunnels is a difficult technique.Traditional technologies such as DPI can no longer identify applications in VPN encrypted tunnel.Various VPN protoc...How to quickly and accurately identify applications in VPN encrypted tunnels is a difficult technique.Traditional technologies such as DPI can no longer identify applications in VPN encrypted tunnel.Various VPN protocols make the feature engineering of machine learning extremely difficult.Deep learning has the advantages that feature extraction does not rely on manual labor and has a good early application in classification.This article uses deep learning technology to classify the applications of VPN encryption tunnel based on the SAE-2dCNN model.SAE can effectively reduce the dimensionality of the data,which not only improves the training efficiency of 2dCNN,but also extracts more precise features and improves accuracy.This paper uses the most common VPN encryption data in the real network to train and test the model.The test results verify the effectiveness of the SAE-2dCNN model.展开更多
The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a resul...The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a result of different regional rock types,as well as in-situ conditions(e.g.,temperature,humidity,and construction procedure),previous automated methods have limited performance in classification of rock structure of tunnel face during construction.This paper presents a framework for classifying multiple rock structures based on the geological images of tunnel face using convolutional neural networks(CNN),namely Inception-ResNet-V2(IRV2).A prototype recognition system is implemented to classify 5 types of rock structures including mosaic,granular,layered,block,and fragmentation structures.The proposed IRV2 network is trained by over 35,000 out of 42,400 images extracted from over 150 sections of tunnel faces and tested by the remaining 7400 images.Furthermore,different hyperparameters of the CNN model are introduced to optimize the most efficient algorithm parameter.Among all the discussed models,i.e.,ResNet-50,ResNet-101,and Inception-v4,Inception-ResNet-V2 exhibits the best performance in terms of various indicators,such as precision,recall,F-score,and testing time per image.Meanwhile,the model trained by a large database can obtain the object features more comprehensively,leading to higher accuracy.Compared with the original image classification method,the sub-image method is closer to the reality considering both the accuracy and the perspective of error divergence.The experimental results reveal that the proposed method is optimal and efficient for automated classification of rock structure using the geological images of the tunnel face.展开更多
Recently,deep learning(DL)became one of the essential tools in bioinformatics.A modified convolutional neural network(CNN)is employed in this paper for building an integratedmodel for deoxyribonucleic acid(DNA)classif...Recently,deep learning(DL)became one of the essential tools in bioinformatics.A modified convolutional neural network(CNN)is employed in this paper for building an integratedmodel for deoxyribonucleic acid(DNA)classification.In any CNN model,convolutional layers are used to extract features followed by max-pooling layers to reduce the dimensionality of features.A novel method based on downsampling and CNNs is introduced for feature reduction.The downsampling is an improved form of the existing pooling layer to obtain better classification accuracy.The two-dimensional discrete transform(2D DT)and two-dimensional random projection(2D RP)methods are applied for downsampling.They convert the high-dimensional data to low-dimensional data and transform the data to the most significant feature vectors.However,there are parameters which directly affect how a CNN model is trained.In this paper,some issues concerned with the training of CNNs have been handled.The CNNs are examined by changing some hyperparameters such as the learning rate,size of minibatch,and the number of epochs.Training and assessment of the performance of CNNs are carried out on 16S rRNA bacterial sequences.Simulation results indicate that the utilization of a CNN based on wavelet subsampling yields the best trade-off between processing time and accuracy with a learning rate equal to 0.0001,a size of minibatch equal to 64,and a number of epochs equal to 20.展开更多
Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the adv...Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset(EMNIST).The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability.Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset.The presence of intra-class variability is mainly due to different shapes written by different writers for the same character.In this research,we have optimized a deep residual network to achieve higher accuracy vs.the published state-of-the-art results.This approach is mainly based on the prebuilt deep residual network model ResNet18,whose architecture has been enhanced by using the optimal number of residual blocks and the optimal size of the receptive field of the first convolutional filter,the replacement of the first max-pooling filter by an average pooling filter,and the addition of a drop-out layer before the fully connected layer.A distinctive modification has been introduced by replacing the final addition layer with a depth concatenation layer,which resulted in a novel deep architecture having higher accuracy vs.the pure residual architecture.Moreover,the dataset images’sizes have been adjusted to optimize their visibility in the network.Finally,by tuning the training hyperparameters and using rotation and shear augmentations,the proposed model outperformed the state-of-the-art models by achieving average accuracies of 95.91%and 90.90%for the Letters and Balanced dataset sections,respectively.Furthermore,the average accuracies were improved to 95.9%and 91.06%for the Letters and Balanced sections,respectively,by using a group of 5 instances of the trained models and averaging the output class probabilities.展开更多
With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public securit...With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%.展开更多
Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stage...Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.展开更多
The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagno...The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method.展开更多
Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widel...Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade,allowing for early disease detection and improving agricultural production.This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning(DL)model,which improved accuracy while decreasing computational complexity.The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy.Using transfer learning,this study successfully proposed a Convolutional Neural Network(CNN)-based pre-trained model(EfficientNetB3,ResNet50,MobiNetV2,and InceptionV3)for the identification and categorization of citrus plant diseases.To evaluate the architecture’s performance,this study discovered that transferring an EfficientNetb3 model resulted in the highest training,validating,and testing accuracies,which were 99.43%,99.48%,and 99.58%,respectively.In identifying and categorizing citrus plant diseases,the proposed CNN model outperforms other cuttingedge CNN model architectures developed previously in the literature.展开更多
基金funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-1010
文摘Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships.Falling ice crystals(approximately 40 000 particles) were measured with a two-dimensional video disdrometer(2DVD) during a winter experiment from 15 January to 9 April 2010.The fall velocity–diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements:the coefficients(exponents) for different snowflake types were 0.82(0.24) for dendrite,0.74(0.35) for plate,1.03(0.71) for needle,and 1.30(0.94) for graupel,respectively.These new relationships established in the present study(PS) were compared with those from two previous studies.Hydrometeor types were classified with the derived fall velocity–diameter relationships,and the classification algorithm was evaluated using 3 × 3 contingency tables for one rain–snow transition event and three snowfall events.The algorithm showed good performance for the transition event:the critical success indices(CSIs) were 0.89,0.61 and 0.71 for snow,wet-snow and rain,respectively.For snow events,the algorithm performance for dendrite and plate(CSIs = 1.0 and 1.0,respectively) was better than for needle and graupel(CSIs = 0.67 and 0.50,respectively).
基金Supported by the National Social Development Research Program of China (No.2004DE100625).
文摘A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.
基金supported by the National Natural Science Foundation of China under Grants No.61170286,No.61202486
文摘P2P traffic has always been a dominant portion of Internet traffic since its emergence in the late 1990s. The method used to accurately classify P2P traffic remains a key problem for Internet Service Producers (ISPs) and network managers. This paper proposes a novel approach to the accurate classification of P2P traffic at a fine-grained level, which depends solely on the number of special flows during small time intervals. These special flows, named Clustering Flows (CFs), are de- fined as the most frequent and steady flows generated by P2P applications. Hence we are able to classify P2P applications by detecting tlle appearance of corresponding CFs. Com- pared to existing approaches, our classifier can realise high classification accuracy by ex- ploiting only several generic properties of flows, instead of extracting sophisticated fea- tures from host behaviours or transport layer data. We validate our framework on a large set of P2P traffic traces using a Support Vector Machine (SVM). Experimental results show that our approach correctly classifies P2P ap- plications with an average true positive rate of above 98% and a negligible false positive rate of about 0.01%.
基金supported by State Key Program of National Natural Science Foundation of China under Grant No.61072061111 Project of China under Grant No.B08004the Fundamental Research Funds for the Central Universities under Grant No.2009RC0122
文摘The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.
文摘Plant disease classification and prevention of spreading of the disease at earlier stages based on visual leaves symptoms and Pest recognition through deep learning-based image classification is in the forefront of research.To perform the investigation on Plant and pest classification,Transfer Learning(TL)approach is used on EfficientNet-V2.TL requires limited labelled data and shorter training time.However,the limitation of TL is the pre-trained model network’s topology is static and the knowledge acquired is detrimentally overwriting the old parameters.EfficientNet-V2 is a Convolutional Neural Network(CNN)model with significant high speed learning rates across variable sized datasets.The model employs a form of progressive learning mechanism which expands the network topology gradually over the course of training process improving the model’s learning capacity.This provides a better interpretability of the model’s understanding on the test domains.With these insights,our work investigates the effectiveness of EfficienetV2 model trained on a class imbalanced dataset for plant disease classification and pest recognition by means of combining TL and progressive learning approach.This Progressive Learning for TL(PL-TL)is used in our work consisting of 38 classes of PlantVillage dataset of crops and fruit species,5 classes of cassava leaf diseases and another dataset with around 102 classes of crop pest images downloaded from popular dataset platforms,though it is not a benchmark dataset.To test the predictability rate of the model in classifying leaf diseases with similar visual symptoms,Mix-up data augmentation technique is used at the ratio of 1:4 on corn and tomato classes which has high probability of misinterpretation of disease classes.Also,the paper compares the TL approach performed on the above mentioned three types of data set using well established CNN based Inceptionv3,and Vision Transformer a non-CNN model.It clearly depicts that EfficientNetV2 has an outstanding performance of 99.5%,97.5%,80.1%on Cassava,PlantVillage and IP102 datasets respectively at a faster rate irrespective of the data size and class distribution as compared to Inception-V3 and ViT models.The performance metrics in terms of accuracy,precision,f1-score is also studied.
文摘This paper aims to establish a comparison between both geomagnetic activity classification methods on foF2 diurnal variation over solar cycle phases. It concerns first a comparison of geomagnetic activity occurrences according to both classification methods;and second the geomagnetic effect on foF2 diurnal variation profiles as defined for the equatorial latitudes. The occurrences of the different disturbed geomagnetic activities (recurrent activity (RA), shock activity (SA) and fluctuant activity (FA)) according to both classifications (ancient classification (AC) and new classification (NC)) have been studied at Dakar ionosonde station (Lat: 14.8°N;Long: 342.6°E). Regarding both classifications, the RA occurs more during the decreasing phase. And it’s observed that the RA occurs the most during the increasing phase for the AC and during the minimum phase for the NC. The maximum gap of occurrence (<img src="Edit_e4627ea9-9a9a-4473-9017-202d04a16377.bmp" alt="" /><span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">11.1%</span><span style="font-family:Verdana;"> (for the negative value which is observed during the increasing phase) and </span><span style="font-family:Verdana;">+16.74%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). The occurrence of the SA in relation with both classifications is the lowest during the minimum phase and the maximum occurrence is observed during the maximum and decreasing phases, for the AC, with a value close to </span><span style="font-family:Verdana;">37%</span><span style="font-family:Verdana;"> and for the NC at the maximum phase with a percentage of </span><span style="font-family:Verdana;">54.47%</span><span><span style="font-family:Verdana;">. The maximum gap of occurrence (</span><img src="Edit_20fa141b-ecee-4e06-8024-144ba0969395.bmp" alt="" /></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">17.85%</span><span style="font-family:Verdana;"> (for the negative value which is observed at maximum phase) and </span><span style="font-family:Verdana;">+13.53%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the decreasing phase). For both classifications, the FA occurs the least during the minimum phase and the most during the maximum phase for the AC and at maximum and decreasing phases with percentage values of occurrence of roughly </span><span style="font-family:Verdana;">37%</span><span><span style="font-family:Verdana;"> for the NC. The maximum gap of occurrence (</span><img src="Edit_eecb8939-783e-4d43-b92c-80c528c1890b.bmp" alt="" /><span style="font-family:Verdana;"></span></span></span><span style="font-family:Verdana;">) between both classifications is <span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">-</span></span>10% (for the negative value which is observed during the decreasing phase) and </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+20.11%</span><span style="font-family:Verdana;"> (for the positive one which is observed during the maximum phase). foF2 diurnal profiles throughout solar cycle phases concerning the AC and the NC have been compared. The FA diurnal profiles don’t present a difference. The RA and the SA present a difference during minimum and increasing phases and the least at maximum and decreasing phases.</span></span></span>
文摘How to quickly and accurately identify applications in VPN encrypted tunnels is a difficult technique.Traditional technologies such as DPI can no longer identify applications in VPN encrypted tunnel.Various VPN protocols make the feature engineering of machine learning extremely difficult.Deep learning has the advantages that feature extraction does not rely on manual labor and has a good early application in classification.This article uses deep learning technology to classify the applications of VPN encryption tunnel based on the SAE-2dCNN model.SAE can effectively reduce the dimensionality of the data,which not only improves the training efficiency of 2dCNN,but also extracts more precise features and improves accuracy.This paper uses the most common VPN encryption data in the real network to train and test the model.The test results verify the effectiveness of the SAE-2dCNN model.
基金supported by the Natural Science Foundation Committee Program of China(Grant Nos.1538009 and 51778474)Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)+1 种基金the Fundamental Research Funds for the Central Universities in China(Grant No.0200219129)Key innovation team program of innovation talents promotion plan by MOST of China(Grant No.2016RA4059)。
文摘The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a result of different regional rock types,as well as in-situ conditions(e.g.,temperature,humidity,and construction procedure),previous automated methods have limited performance in classification of rock structure of tunnel face during construction.This paper presents a framework for classifying multiple rock structures based on the geological images of tunnel face using convolutional neural networks(CNN),namely Inception-ResNet-V2(IRV2).A prototype recognition system is implemented to classify 5 types of rock structures including mosaic,granular,layered,block,and fragmentation structures.The proposed IRV2 network is trained by over 35,000 out of 42,400 images extracted from over 150 sections of tunnel faces and tested by the remaining 7400 images.Furthermore,different hyperparameters of the CNN model are introduced to optimize the most efficient algorithm parameter.Among all the discussed models,i.e.,ResNet-50,ResNet-101,and Inception-v4,Inception-ResNet-V2 exhibits the best performance in terms of various indicators,such as precision,recall,F-score,and testing time per image.Meanwhile,the model trained by a large database can obtain the object features more comprehensively,leading to higher accuracy.Compared with the original image classification method,the sub-image method is closer to the reality considering both the accuracy and the perspective of error divergence.The experimental results reveal that the proposed method is optimal and efficient for automated classification of rock structure using the geological images of the tunnel face.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Recently,deep learning(DL)became one of the essential tools in bioinformatics.A modified convolutional neural network(CNN)is employed in this paper for building an integratedmodel for deoxyribonucleic acid(DNA)classification.In any CNN model,convolutional layers are used to extract features followed by max-pooling layers to reduce the dimensionality of features.A novel method based on downsampling and CNNs is introduced for feature reduction.The downsampling is an improved form of the existing pooling layer to obtain better classification accuracy.The two-dimensional discrete transform(2D DT)and two-dimensional random projection(2D RP)methods are applied for downsampling.They convert the high-dimensional data to low-dimensional data and transform the data to the most significant feature vectors.However,there are parameters which directly affect how a CNN model is trained.In this paper,some issues concerned with the training of CNNs have been handled.The CNNs are examined by changing some hyperparameters such as the learning rate,size of minibatch,and the number of epochs.Training and assessment of the performance of CNNs are carried out on 16S rRNA bacterial sequences.Simulation results indicate that the utilization of a CNN based on wavelet subsampling yields the best trade-off between processing time and accuracy with a learning rate equal to 0.0001,a size of minibatch equal to 64,and a number of epochs equal to 20.
文摘Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset(EMNIST).The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability.Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset.The presence of intra-class variability is mainly due to different shapes written by different writers for the same character.In this research,we have optimized a deep residual network to achieve higher accuracy vs.the published state-of-the-art results.This approach is mainly based on the prebuilt deep residual network model ResNet18,whose architecture has been enhanced by using the optimal number of residual blocks and the optimal size of the receptive field of the first convolutional filter,the replacement of the first max-pooling filter by an average pooling filter,and the addition of a drop-out layer before the fully connected layer.A distinctive modification has been introduced by replacing the final addition layer with a depth concatenation layer,which resulted in a novel deep architecture having higher accuracy vs.the pure residual architecture.Moreover,the dataset images’sizes have been adjusted to optimize their visibility in the network.Finally,by tuning the training hyperparameters and using rotation and shear augmentations,the proposed model outperformed the state-of-the-art models by achieving average accuracies of 95.91%and 90.90%for the Letters and Balanced dataset sections,respectively.Furthermore,the average accuracies were improved to 95.9%and 91.06%for the Letters and Balanced sections,respectively,by using a group of 5 instances of the trained models and averaging the output class probabilities.
基金This work was supported by Ministry of public security technology research program[Grant No.2020JSYJC22ok]Fundamental Research Funds for the Central Universities(No.2021JKF215)+1 种基金Open Research Fund of the Public Security Behavioral Science Laboratory,People’s Public Security University of China(2020SYS03)Police and people build/share a smart community(PJ13-201912-0525).
文摘With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%.
文摘目的构建2型糖尿病住院患者核心护理标准化语言,为规范临床护理记录提供参考。方法聚焦2型糖尿病住院患者的护理,通过文献检索、回顾医院护理记录及专家咨询确定2型糖尿病住院患者核心护理诊断,通过“国际北美护理诊断协会分类(North American Nursing Diagnosis Association International,NANDA-Ⅰ)、护理措施分类(Nursing Interventions Classification,NIC)、护理结局分类(Nursing Outcomes Classification,NOC)”(简称NNN链接)初步筛选核心护理诊断所匹配的核心护理结局、护理指标及核心护理措施、护理活动,邀请21名专家进行2轮函询进行修订完善,最终形成2型糖尿病住院患者核心护理标准化语言。结果2型糖尿病住院患者核心护理标准化语言包括6项护理诊断、11项护理结局(52项护理指标)、15项护理措施(126项护理活动)。结论本研究构建的2型糖尿病住院患者核心护理标准化语言符合我国国情、文化背景、语言理解及临床实践,具有专业性、科学性,有利于实现护理语言的标准化,提升糖尿病专科护理质量。
基金This work was supported by the National Research Foundation of Korea-Grant funded by the Korean Government(Ministry of Science and ICT)-NRF-2020R1A2B5B02002478).There was no additional external funding received for this study.
文摘Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.
基金The authors would like to thank the deanship of scientific research and Re-search Center for engineering and applied sciences,Majmaah University,Saudi Arabia,for their support and encouragementthe authors would like also to express deep thanks to our College(College of Science at Zulfi City,Majmaah University,AL-Majmaah 11952,Saudi Arabia)Project No.31-1439.
文摘The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method.
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and granted financial resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups.Project under grant number(R.G.P.1/257/43).
文摘Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade,allowing for early disease detection and improving agricultural production.This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning(DL)model,which improved accuracy while decreasing computational complexity.The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy.Using transfer learning,this study successfully proposed a Convolutional Neural Network(CNN)-based pre-trained model(EfficientNetB3,ResNet50,MobiNetV2,and InceptionV3)for the identification and categorization of citrus plant diseases.To evaluate the architecture’s performance,this study discovered that transferring an EfficientNetb3 model resulted in the highest training,validating,and testing accuracies,which were 99.43%,99.48%,and 99.58%,respectively.In identifying and categorizing citrus plant diseases,the proposed CNN model outperforms other cuttingedge CNN model architectures developed previously in the literature.