期刊文献+
共找到701篇文章
< 1 2 36 >
每页显示 20 50 100
Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS_2-based anode for lithium storage 被引量:1
1
作者 Chunwei Dong Yongjin Xia +7 位作者 Zhijiang Su Zhihua Han Yang Dong Jingyun Chen Fei Hao Qiyao Yu Qing Jiang Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期700-709,I0015,共11页
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug... Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs. 展开更多
关键词 Lithium-ion batteries Porous amorphous carbon Carbon nanotubes SnS_(2)-based anode Density functional theory calculations
下载PDF
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes
2
作者 Jing Sun Qinping Jian +2 位作者 Bin Liu Pengzhu Lin Tianshou Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期158-166,共9页
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain... Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes. 展开更多
关键词 2D MOF DESOLVATION INTERPHASE ion sieve zinc anode
下载PDF
Polypyrrole-coated triple-layer yolk-shell Fe_(2)O_(3)anode materials with their superior overall performance in lithium-ion batteries
3
作者 Zhen He Jiaming Liu +5 位作者 Yuqian Wei Yunfei Song Wuxin Yang Aobo Yang Yuxin Wang Bo Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2737-2748,共12页
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast... Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields. 展开更多
关键词 Fe_(2)O_(3) structure design anode material lithium-ion battery
下载PDF
Enhanced Li storage of pure crystalline-C_(60) and TiNb_(2)O_(7)-nanostructure composite for Li-ion battery anodes
4
作者 Injun Jeon Linghong Yin +5 位作者 Dingcheng Yang Hong Chen Seong Won Go Min Seung Kang Hyung Soo Ahn Chae-Ryong Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期478-485,I0010,共9页
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b... We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials. 展开更多
关键词 Li-ion battery anode material TiNb_(2)O_(7) nanofiber FULLERENE Electrochemical performance
下载PDF
Plasma Surface Modification of Li_(2)TiSiO_(5) Anode for Lithium-Ion Batteries
5
作者 Shangqi Sun Lingchao Xiao +1 位作者 Qifeng Qian Yunfeng Deng 《Energy Engineering》 EI 2024年第10期2769-2776,共8页
Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the s... Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5) is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5) is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5) after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment. 展开更多
关键词 PLASMA Li_(2)TiSiO_(5) surface modification anodE
下载PDF
Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb_(2)O_(6) toward Lithium-Ion Capacitors as an Anode-Active Material
6
作者 Chao Cheng Yunsheng Yan +3 位作者 Minyu Jia Yang Liu Linrui Hou Changzhou Yuan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期287-298,共12页
The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and c... The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs. 展开更多
关键词 high-rate anodes lithium-ion capacitors lithium-storage mechanisms orthorhombic CuNb_(2)O_(6) phase transform
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
7
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) anode material Sodium-ion battery Full cell
下载PDF
In situ formation of an intimate solid-solid interface by reaction between MgH_(2) and Ti to stabilize metal hydride anode with high active material content
8
作者 Yixin Chen Atsushi Inoishi +2 位作者 Shigeto Okada Hikari Sakaebe Ken Albrecht 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3193-3203,共11页
MgH_(2) and TiH_(2) have been extensively studied as potential anode materials due to their high theoretical specific capacities of 2036 and 1024 mAh/g,respectively.However,the large volume changes that these compound... MgH_(2) and TiH_(2) have been extensively studied as potential anode materials due to their high theoretical specific capacities of 2036 and 1024 mAh/g,respectively.However,the large volume changes that these compounds undergo during cycling affects their performance and limits practical applications.The present work demonstrates a novel approach to limiting the volume changes of active materials.This effect is based on mechanical support from an intimate interface generated in situ via the reaction between MgH_(2) and Ti within the electrode prior to lithiation to form Mg and TiH_(2).The resulting Mg can be transformed back to MgH_(2) by reaction with LiH during delithiation.In addition,the TiH_(2) improves the reaction kinetics of MgH_(2) and enhances electrochemical performance.The intimate interface produced in this manner is found to improve the electrochemical properties of a MgH_(2)-Ti-LiH electrode.An exceptional reversible capacity of 800 mAh/g is observed even after 200 cycles with a high current density of 1 mA/cm^(2) and a high proportion of active material(90 wt.%)at an operation temperature of 120℃.This study therefore showcases a new means of improving the performance of electrodes by limiting the volume changes of active materials. 展开更多
关键词 All-solid-state battery In situ formation of solid electrolyte In situ formed intimate interface MgH_(2)anode
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
9
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
Solid-state NMR study on sodium intercalation at low voltage window for Na_(3)V_(2)(PO_(4))_(3) as an anode
10
作者 Yuxin Liao Fushan Geng +1 位作者 Ming Shen Bingwen Hu 《Magnetic Resonance Letters》 2024年第2期40-45,共6页
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_... In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) anodE Low voltage NMR Sodium ion battery
下载PDF
Two-Step Anodization of Maltilayer TiO_2 Nanotube and Its Photocatalytic Activity under UV Light
11
作者 王雪莱 赵修建 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期866-870,共5页
A double-layer TiO2 nanotube arrays were formed by two-step anodization of Ti foils in different electrolytes. First, Ti in 0.5 wt% HF was anodized to form thin nanotube layer. Afterwards a second anodization was cond... A double-layer TiO2 nanotube arrays were formed by two-step anodization of Ti foils in different electrolytes. First, Ti in 0.5 wt% HF was anodized to form thin nanotube layer. Afterwards a second anodization was conducted in a formamide based electrolyte, which allowed the second layer of nanotube growing directly underneath the first one. From FESEM investigation we found that the thickness of second layer corresponded to the anodization time, the increasing of which would lead to the excessive etching on the first layer. The first layer protected the lower one from fluoride corrosion during anodization process. The double layer TiO2 nanotube arrays showed no benefit to photodegradation effect in methyl orange degradation experiments. 展开更多
关键词 double-layer TiO2 nanotube anodization photocatalysis methyl orange degradation
下载PDF
Fabrication and photodegradation properties of TiO_2 nanotubes on porous Ti by anodization 被引量:8
12
作者 曹国剑 崔博 +3 位作者 王文奇 唐光泽 冯义成 王丽萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2581-2587,共7页
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe... Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation. 展开更多
关键词 TiO_2 nanotubes anodization PHOTODEGRADATION porous Ti
下载PDF
Sb_(2)S_(3)/石墨烯负极材料的制备及其储钠性能研究
13
作者 王旭 杨观华 +2 位作者 李翼宏 张志国 张杰 《广西科技大学学报》 CAS 2024年第1期106-112,共7页
钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量... 钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。 展开更多
关键词 钠离子电池 硫化锑(Sb_(2)S_(3)) 石墨烯 负极材料
下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:1
14
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application Zn anode LIFESPAN 2D materials
下载PDF
锌电积用Pb-Ag阳极MnO_(2)镀膜的电化学性能 被引量:1
15
作者 王恩泽 郭孟伟 +3 位作者 邵伟春 高明远 徐存英 张启波 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期490-502,共13页
锌电积用Pb-Ag阳极存在析氧过电位高、表面铅易电化学氧化溶解,造成阴极电锌品质低等突出问题,如何减少阳极的溶铅污染并提升其催化析氧活性、降低反应能耗,成为亟待解决的难题。本文在Pb-Ag阳极表面电沉积一层均匀、致密的MnO_(2)薄膜... 锌电积用Pb-Ag阳极存在析氧过电位高、表面铅易电化学氧化溶解,造成阴极电锌品质低等突出问题,如何减少阳极的溶铅污染并提升其催化析氧活性、降低反应能耗,成为亟待解决的难题。本文在Pb-Ag阳极表面电沉积一层均匀、致密的MnO_(2)薄膜,采用SEM、XRD和ICP等对MnO_(2)催化层的表面微观形貌、晶体结构和溶液含铅量进行分析;采用CV、LSV、EIS和Tafel等对Pb-Ag/MnO_(2)阳极的析氧催化活性和耐腐蚀性能进行分析。结果表明:在MnSO_(4)-H_(2)SO_(4)溶液中,当循环速率为200 mL/min、温度为80℃时,以4 mA/cm^(2)电沉积120 min制备的Pb-Ag/MnO_(2)镀膜电极具有最佳的催化析氧和耐蚀性能;PbAg阳极经优化镀膜后,50 mA/cm^(2)时其析氧过电位由936 mV降低为648 mV,腐蚀电流密度由7.03μA/cm^(2)降低至0.66μA/cm^(2);相较于Pb-Ag阳极,基于Pb-Ag/MnO_(2)阳极的15 d长周期电锌体系中溶铅量由0.61 mg/L降至0.29 mg/L。 展开更多
关键词 锌电积 Pb-Ag阳极 MnO_(2)镀膜 催化析氧 耐蚀性能
下载PDF
Boosting Zn^(2+)kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes 被引量:1
16
作者 Bin Luo Yang Wang +5 位作者 Leilei Sun Sinan Zheng Guosheng Duan Zhean Bao Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期632-641,I0016,共11页
Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages... Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages.However,AZIBs still suffer from serious problems such as dendrites Zn,hydrogen evolution corrosion,and surface passivation,which hinder the further commercial application of AZIBs.Herein,an in-situ ZnCr_(2)O_(4)(ZCO)interface endows AZIBs with dendrite-free and ultra-low polarization by realizing Zn^(2+)pre-desolvation,constraining H2O-induced corrosio n,and boosting Zn^(2+)transport/deposition kinetics.The ZCO@Zn anode harvests an ultrahigh cumulative capacity of~20000 mA h cm^(-2)(cycle time:over 4000 h)at a high current density of 10 mA cm^(-2),indicating excellent reversibility of Zn deposition,Such superior performance is among the best cyclability in AZIBs.Moreover,the multifunctional ZCO interface improves the Coulombic efficiency(CE)to 99.7%for more than 2600 cycles.The outstanding electrochemical performance is also verified by the long-term cycle stability of ZCO@Zn//α-MnO_(2) full cells.Notably,the as-proposed method is efficient and low-cost enough to enable mass production.This work provides new insights into the uniform Zn electrodeposition at the scale of interfacial Zn^(2+)predesolvation and kinetics improvement. 展开更多
关键词 Zinc ion battery Dendrite-free Zn anode In-situ reaction Pre-desolvation Zn^(2+)kinetics
下载PDF
Enabling High-Performance Sodium Battery Anodes by Complete Reduction of Graphene Oxide and Cooperative In-Situ Crystallization of Ultrafine SnO_(2)Nanocrystals 被引量:2
17
作者 Junwu Sang Kangli Liu +4 位作者 Xiangdan Zhang Shijie Zhang Guoqin Cao Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期356-365,共10页
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a... The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs. 展开更多
关键词 in situ compositing microwave reduced graphene oxide sodium ion battery sodium ion battery anode ultrafine SnO_(2)nanocrystals
下载PDF
Mo_(0.05)Ti_(1.95)Nb_(10)O_(29)/C复合负极材料的制备与性能研究 被引量:1
18
作者 张昊 党兆涵 +3 位作者 韩现英 卫高阳 刘奇豪 李建刚 《化工新型材料》 CAS CSCD 北大核心 2024年第8期131-135,146,共6页
Ti_(2)Nb_(10)O_(29)具有理论容量高、结构稳定、安全性好等优势,是非常有应用前景的锂离子电池和锂离子电容器用新型负极材料,但其电子导电率极低,限制了应用。采用Mo掺杂和碳包覆双协同策略,经优化葡萄糖添加量所制Mo_(0.05)Ti_(1.95)... Ti_(2)Nb_(10)O_(29)具有理论容量高、结构稳定、安全性好等优势,是非常有应用前景的锂离子电池和锂离子电容器用新型负极材料,但其电子导电率极低,限制了应用。采用Mo掺杂和碳包覆双协同策略,经优化葡萄糖添加量所制Mo_(0.05)Ti_(1.95)Nb_(10)O_(29)/C复合负极材料显著提升了充放电性能,0.1C充放电的可逆容量达到了313.6mAh/g,10C倍率下的可逆容量比Ti_(2)Nb_(10)O_(29)的提升了72.3mAh/g,高达174.3mAh/g,且0.5C循环100圈后容量损失仅2.4%。第一性原理分析证明,该电性能的提升主要归因于Mo掺杂导致的Ti_(2)Nb_(10)O_(29)材料本征电子导电性提高及碳包覆导致的材料颗粒间电子传输行为改善。 展开更多
关键词 锂离子电池 负极材料 Ti_(2)Nb_(10)O_(29) Mo掺杂 碳包覆
下载PDF
Surface Patterning of Metal Zinc Electrode with an In‑Region Zincophilic Interface for High‑Rate and Long‑Cycle‑Life Zinc Metal Anode 被引量:1
19
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova‑Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期192-209,共18页
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im... The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs. 展开更多
关键词 Zn metal anode Surface patterning Directional Zn deposition Aqueous Zn-I_(2)batteries
下载PDF
电积锌用Pb-Ag/MnO_(2)涂层阳极制备及电化学性能
20
作者 李传斌 江洪林 +3 位作者 田林 袁学韬 胡志方 尹延西 《矿冶》 CAS 2024年第5期677-683,共7页
铅银合金(Pb-Ag)是锌电积及其它冶金工艺中应用最广泛的阳极材料。随着节能环保要求的逐渐提高,由于存在过电位低和稳定性差等缺点,Pb-Ag阳极难以适用于绿色工业体系的发展。如何提升其析氧催化活性、降低能耗并提高其耐腐蚀性能,成为... 铅银合金(Pb-Ag)是锌电积及其它冶金工艺中应用最广泛的阳极材料。随着节能环保要求的逐渐提高,由于存在过电位低和稳定性差等缺点,Pb-Ag阳极难以适用于绿色工业体系的发展。如何提升其析氧催化活性、降低能耗并提高其耐腐蚀性能,成为亟待解决的工业难题。采用恒电流电沉积法在Pb-Ag阳极上制备了纳米二氧化锰薄膜涂层,测试了阳极的组织和电化学性能。研究表明:MnO_(2)涂层表面疏松裂纹结构不仅提高了催化活性,还促进了传质过程的进行,使得Pb-Ag/MnO_(2)阳极的析氧反应活性和稳定性均优于Pb-Ag阳极。其中,Pb-Ag/MnO_(2)阳极的析氧过电位为555 mV,塔菲尔斜率为208.5 mV/dec,优于Pb-Ag阳极的析氧过电位和塔菲尔斜率。同时,Pb-Ag/MnO_(2)阳极在长周期的电解锌实验中表现出良好的析氧反应活性和耐腐蚀性能,其槽电压比Pb-Ag阳极槽电压小0.1 V左右,能耗低于Pb-Ag阳极。 展开更多
关键词 锌电积 Pb-Ag阳极 MnO_(2)涂层 析氧活性 电化学性能 耐腐蚀性能
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部