RELATED TO AP2.12(RAP2.12)is one of the Ethylene Response Factors(ERF)transcription factor and plays a key role in controlling plant root bending and responding to multiple abiotic stresses including hypoxia stress.In...RELATED TO AP2.12(RAP2.12)is one of the Ethylene Response Factors(ERF)transcription factor and plays a key role in controlling plant root bending and responding to multiple abiotic stresses including hypoxia stress.In this study,FmRAP2.12 gene was isolated and characterized from Fraxinus mandshurica Rupr.The open reading frame(ORF)of FmRAP2.12 was 1170 bp and encoded a protein of 389 amino acids.The conserved domains,three-dimensional phylogenetic relationship of FmRAP2.12 was also investigated.Quantitative real-time(qRT-PCR)analyzed the expression of FmRAP2.12 in different tissues.The expression level of FmRAP2.12 was highest in roots followed by leaves,and lowest in male flowers.Abiotic stress and hormone signal-induced expression was established using qRT-PCR.Salt stress induced FmRAP2.12 to a double peak pattern:the first peak value was at 6 h and the second at 72 h.Drought stress also induced FmRAP2.12 to a double peak pattern:the first at6 h and the second at 48 h.FmRAP2.12 was up-regulated after initiation of gibberellic acid(GA3)treatment,with a one peak pattern at 24 h.FmRAP2.12 may not respond to cold stress and Abscisic acid(ABA)treatment.The transient overexpression of FmRAP2.12 caused the up-expression of downstream key genes of abiotic stress response and gibberellin pathway.Our research reveals the molecular characteristic and expression patterns under abiotic stress and hormone condition of FmRAP2.12,providing support for the genetic improvement of F.mandshurica at a molecular level.展开更多
ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the...ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70,influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana.Furthermore,we demonstrate the direct binding of WRKY70 to the ACBP4 promoter,resulting in its upregulation and suggesting a positive feedback loop.Additionally,we pinpointed a phosphorylation site at Ser638 of ACBP4,which enhances submergence tolerance,potentially by facilitating WRKY70's nuclear shuttling.Surprisingly,a natural variation in this phosphorylation site of ACBP4 allowed A.thaliana to adapt to humid conditions during its historical demographic expansion.We further observed that both phosphorylated ACBP4 and oleoyl-Co A can impede the interaction between ACBP4 and WRKY70,thus promoting WRKY70's nuclear translocation.Finally,we found that the overexpression of orthologous Bna C5.ACBP4and Bna A7.WRKY70 in Brassica napus increases submergence tolerance,indicating their functional similarity across genera.In summary,our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response,but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.展开更多
Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production.Hypoxic conditions,with oxygen levels ranging between 1%and 5%,usually limit aerobic respiration and affect plant growth and...Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production.Hypoxic conditions,with oxygen levels ranging between 1%and 5%,usually limit aerobic respiration and affect plant growth and development.Here,we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regener-ation competence of the callus in Arabidopsis thaliana.We showed that hypoxia-repressed plant regener-ation is mediated by the RELATED TO APETALA2.12(RAP2.12)protein,a memberof the Ethylene Response Factor VIl(ERF-Vll)family.We found that the hypoxia-activated RAP2.12 protein promotes salicylic acid(SA)biosynthesis and defense responses,thereby inhibiting pluripotency acquisition and de novo shoot regeneration in calli.Molecular and genetic analyses revealed that RAP2.12 could bind directly to the SALICYLIC ACID INDUCTION DEFICIENT 2(SID2)gene promoter and activate SA biosynthesis,repressing plant regeneration possibly via a PLETHORA(PLT)-dependent pathway.Consistently,the rap2.12 mutant calli exhibits enhanced shoot regeneration,which is impaired by SA treatment.Taken together,these find-ings uncover that the cell proliferation-dependent hypoxic microenvironment reduces cellular pluripotency and plant regeneration through the RAP2.12-SID2 module.展开更多
基金supported by the National Key Research and Development Project of China(No.2017YFD0600605-01)the National Natural Science Foundation of China(NSFC)(No.31270697)
文摘RELATED TO AP2.12(RAP2.12)is one of the Ethylene Response Factors(ERF)transcription factor and plays a key role in controlling plant root bending and responding to multiple abiotic stresses including hypoxia stress.In this study,FmRAP2.12 gene was isolated and characterized from Fraxinus mandshurica Rupr.The open reading frame(ORF)of FmRAP2.12 was 1170 bp and encoded a protein of 389 amino acids.The conserved domains,three-dimensional phylogenetic relationship of FmRAP2.12 was also investigated.Quantitative real-time(qRT-PCR)analyzed the expression of FmRAP2.12 in different tissues.The expression level of FmRAP2.12 was highest in roots followed by leaves,and lowest in male flowers.Abiotic stress and hormone signal-induced expression was established using qRT-PCR.Salt stress induced FmRAP2.12 to a double peak pattern:the first peak value was at 6 h and the second at 72 h.Drought stress also induced FmRAP2.12 to a double peak pattern:the first at6 h and the second at 48 h.FmRAP2.12 was up-regulated after initiation of gibberellic acid(GA3)treatment,with a one peak pattern at 24 h.FmRAP2.12 may not respond to cold stress and Abscisic acid(ABA)treatment.The transient overexpression of FmRAP2.12 caused the up-expression of downstream key genes of abiotic stress response and gibberellin pathway.Our research reveals the molecular characteristic and expression patterns under abiotic stress and hormone condition of FmRAP2.12,providing support for the genetic improvement of F.mandshurica at a molecular level.
基金the Natural Science Foundation of China(No.32270302 and No.32030006)the Fundamental Research Funds for the Central Universities(SCU2022D003)。
文摘ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70,influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana.Furthermore,we demonstrate the direct binding of WRKY70 to the ACBP4 promoter,resulting in its upregulation and suggesting a positive feedback loop.Additionally,we pinpointed a phosphorylation site at Ser638 of ACBP4,which enhances submergence tolerance,potentially by facilitating WRKY70's nuclear shuttling.Surprisingly,a natural variation in this phosphorylation site of ACBP4 allowed A.thaliana to adapt to humid conditions during its historical demographic expansion.We further observed that both phosphorylated ACBP4 and oleoyl-Co A can impede the interaction between ACBP4 and WRKY70,thus promoting WRKY70's nuclear translocation.Finally,we found that the overexpression of orthologous Bna C5.ACBP4and Bna A7.WRKY70 in Brassica napus increases submergence tolerance,indicating their functional similarity across genera.In summary,our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response,but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.
基金funded by the Samsung Science and Technology Foundation(South Korea)under Project Number SSTF-BA2001-10by the New Breeding Technologies Development Program(RS-2024-00322275)of the Rural Development Administration,South Korea.
文摘Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production.Hypoxic conditions,with oxygen levels ranging between 1%and 5%,usually limit aerobic respiration and affect plant growth and development.Here,we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regener-ation competence of the callus in Arabidopsis thaliana.We showed that hypoxia-repressed plant regener-ation is mediated by the RELATED TO APETALA2.12(RAP2.12)protein,a memberof the Ethylene Response Factor VIl(ERF-Vll)family.We found that the hypoxia-activated RAP2.12 protein promotes salicylic acid(SA)biosynthesis and defense responses,thereby inhibiting pluripotency acquisition and de novo shoot regeneration in calli.Molecular and genetic analyses revealed that RAP2.12 could bind directly to the SALICYLIC ACID INDUCTION DEFICIENT 2(SID2)gene promoter and activate SA biosynthesis,repressing plant regeneration possibly via a PLETHORA(PLT)-dependent pathway.Consistently,the rap2.12 mutant calli exhibits enhanced shoot regeneration,which is impaired by SA treatment.Taken together,these find-ings uncover that the cell proliferation-dependent hypoxic microenvironment reduces cellular pluripotency and plant regeneration through the RAP2.12-SID2 module.