To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla...The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
Engineering structures made of ceramic matrix composites(CMCs)usually suffer from cyclic loads during service,which could lead to disastrous failures.This work focuses on the fatigue behavior of a 2.5D C/SiC composite...Engineering structures made of ceramic matrix composites(CMCs)usually suffer from cyclic loads during service,which could lead to disastrous failures.This work focuses on the fatigue behavior of a 2.5D C/SiC composite under tension–tension cyclic loading.Experiments of the 2.5D C/SiC composite are firstly carried out to determine the fatigue lifetime of the material at different stress levels.The fracture surfaces examined by a scanning electronic microscope indicate that the damage mechanisms under cyclic loading are closely related to crack propagation,fiber/matrix interfacial degradation,and fiber breakage.Considering the damage evolution of fibers and interfacial resistance,a micromechanical model is adopted to describe the fatigue behavior of 2.5D C/SiC composite,and the numerical results are compared with the experimental results.Further,a sensitivity analysis is performed as a function of the interfacial shear stress,fiber Weibull modulus,and fiber strength.The calculation of sensitivity factors shows that the variations of the fiber Weibull modulus and fiber strength have the most significant influence and,thereafter,the variation of interfacial shear stress.展开更多
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro...Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.展开更多
Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive dam...Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the mate...Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the material heterogeneity induced by complex removal mechanism.To clarify the effects of fiber orientation on the grinding characteristics and removal mechanism,single grit scratch experiments under different fiber orientations are conducted and a three-phase numerical modelling method for 2.5D C_(f)/SiC composites is proposed.Three fiber cutting modes i.e.,transverse,normal and longitudinal,are defined by fiber orientation and three machining directions i.e.,MA(longitudinal and normal),MB(longitudinal and transverse)and MC(normal and transverse),are selected to investigate the effect of fiber orientation on grinding force and micro-morphology.Besides,a three-phase cutting model of 2.5D C_(f)/SiC composites considering the mechanical properties of the matrix,fiber and interface is developed.Corresponding simulations are performed to reveal the micro-mechanism of crack initiation and extension as well as the material removal mechanism under different fiber orientations.The results indicate that the scratching forces fluctuate periodically,and the order of mean forces is MA>MC>MB.Cracks tend to grow along the fiber axis,which results in the largest damage layer for transverse fibers and the smallest for longitudinal fibers.The removal modes of transverse fibers are worn,fracture and peel-off,in which normal fibers are pullout and outcrop and the longitudinal fibers are worn and push-off.Under the stable cutting condition,the change of contact area between fiber and grit leads to different removal modes of fiber in the same cutting mode,and the increase of contact area results in the aggravation of fiber fracture.展开更多
In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of...In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of acoustic emission(AE)signals after completing the tensile tests at ambient temperature.Using in-plane tensile at 800 and 1000°C as implementing examples,supervised recognition(K-nearest neighbor(KNN))was used to identify damage mode in real time.According to the damage identification results,four main tensile damage modes of 2D C/SiC composites were identified:matrix cracking(122.6–201 kHz),interfacial debonding(201–294.4 kHz),interfacial sliding(20.6–122.6 kHz)and fiber breaking(294.4–1000 kHz).Additionally,the damage evolution mechanisms for the 2D C/SiC composites were analyzed based on the characteristics of AE energy accumulation curve during the in-plane tensile loading at ambient and elevated temperature with oxidation.Meanwhile,the energy of various damage modes was accurately calculated by harmonic wavelet packet and the damage degree of modes could be analyzed.The identification results show that compared with previous studies,using the AE analysis method,the method has higher sensitivity and accuracy.展开更多
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.
基金financially supported by the National Key R&D Program of China(No.2022YFB3-401900)the National Natural Science Foundation of China(No.U21A20134)the Shandong Provincial Natural Science Foundation(Excellent Young Fund,No.ZR2022YQ48).
文摘The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金This paper is supported by the Jiangsu Natural Science Foundation(BK20170022).
文摘Engineering structures made of ceramic matrix composites(CMCs)usually suffer from cyclic loads during service,which could lead to disastrous failures.This work focuses on the fatigue behavior of a 2.5D C/SiC composite under tension–tension cyclic loading.Experiments of the 2.5D C/SiC composite are firstly carried out to determine the fatigue lifetime of the material at different stress levels.The fracture surfaces examined by a scanning electronic microscope indicate that the damage mechanisms under cyclic loading are closely related to crack propagation,fiber/matrix interfacial degradation,and fiber breakage.Considering the damage evolution of fibers and interfacial resistance,a micromechanical model is adopted to describe the fatigue behavior of 2.5D C/SiC composite,and the numerical results are compared with the experimental results.Further,a sensitivity analysis is performed as a function of the interfacial shear stress,fiber Weibull modulus,and fiber strength.The calculation of sensitivity factors shows that the variations of the fiber Weibull modulus and fiber strength have the most significant influence and,thereafter,the variation of interfacial shear stress.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_165)+2 种基金the Fundamental Research Funds for the Central Universities,Aeronautical Science Foundation of China(No.2012ZB52026)Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
基金Sponsored by the Pre⁃Research Foundation of Shenyang Aircraft Design and Research Institute,Aviation Industry Corporation of China(Grant No.JH20128255).
文摘Ceramic matrix composite(CMC)and superalloy bolted joints are commonly used high temperature connection structures in aerospace and aeronautical fields.In this paper,a finite element model coupled with progressive damage analysis of 2D C/SiC composites and superalloy bolted joint was implemented to simulate the uniaxial tensile loading process by using the ABAQUS finite element software.The parametric effects of raised head bolt on stress distribution,tensile performance,and damage process were studied for the CMC⁃superalloy bolted joint structures.The results showed that the final failure load increased first to the maximum value,and then decreased with the rise of bolt diameter,bolt head diameter,and bolt head thickness,respectively.When the three parameters were 5.0 mm,9.5 mm,and 2.8 mm for the current studied bolt configuration,the joint structure gave the maximum load bearing capacity for the considered parameter ranges.It was also found that around 42%potential improvement in load bearing capacity could be achieved by very small adjustments in bolt parameters of the joints.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金supported by the National Natural Science Foundation of China(No.51922066)the Key Research and Development Plan of Shandong Province(Nos.2019JMRH0307,2020CXGC010204)。
文摘Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the material heterogeneity induced by complex removal mechanism.To clarify the effects of fiber orientation on the grinding characteristics and removal mechanism,single grit scratch experiments under different fiber orientations are conducted and a three-phase numerical modelling method for 2.5D C_(f)/SiC composites is proposed.Three fiber cutting modes i.e.,transverse,normal and longitudinal,are defined by fiber orientation and three machining directions i.e.,MA(longitudinal and normal),MB(longitudinal and transverse)and MC(normal and transverse),are selected to investigate the effect of fiber orientation on grinding force and micro-morphology.Besides,a three-phase cutting model of 2.5D C_(f)/SiC composites considering the mechanical properties of the matrix,fiber and interface is developed.Corresponding simulations are performed to reveal the micro-mechanism of crack initiation and extension as well as the material removal mechanism under different fiber orientations.The results indicate that the scratching forces fluctuate periodically,and the order of mean forces is MA>MC>MB.Cracks tend to grow along the fiber axis,which results in the largest damage layer for transverse fibers and the smallest for longitudinal fibers.The removal modes of transverse fibers are worn,fracture and peel-off,in which normal fibers are pullout and outcrop and the longitudinal fibers are worn and push-off.Under the stable cutting condition,the change of contact area between fiber and grit leads to different removal modes of fiber in the same cutting mode,and the increase of contact area results in the aggravation of fiber fracture.
基金the National Natural Science Foundation of China(Grant No.12172304)the 111 Project(Grant No.BP0719007).
文摘In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of acoustic emission(AE)signals after completing the tensile tests at ambient temperature.Using in-plane tensile at 800 and 1000°C as implementing examples,supervised recognition(K-nearest neighbor(KNN))was used to identify damage mode in real time.According to the damage identification results,four main tensile damage modes of 2D C/SiC composites were identified:matrix cracking(122.6–201 kHz),interfacial debonding(201–294.4 kHz),interfacial sliding(20.6–122.6 kHz)and fiber breaking(294.4–1000 kHz).Additionally,the damage evolution mechanisms for the 2D C/SiC composites were analyzed based on the characteristics of AE energy accumulation curve during the in-plane tensile loading at ambient and elevated temperature with oxidation.Meanwhile,the energy of various damage modes was accurately calculated by harmonic wavelet packet and the damage degree of modes could be analyzed.The identification results show that compared with previous studies,using the AE analysis method,the method has higher sensitivity and accuracy.