A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-l...A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.展开更多
With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming ...With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming draft creation are discussed in this paper which can be used as references to manufacture woven preforms with changing cross sections.展开更多
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele...Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy.展开更多
The 3D orthogonal woven basalt fiber reinforced polyimide (PI) composites were fabricated and characterized in this study. The PI film was firstly prepared to determine PI processing parameters. Fourier transform infr...The 3D orthogonal woven basalt fiber reinforced polyimide (PI) composites were fabricated and characterized in this study. The PI film was firstly prepared to determine PI processing parameters. Fourier transform infrared (FTIR) analysis showed that 300°C was the suitable imidization temperature. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed relatively good thermal properties of the PI film. In the fabrication of composites, the multi-step impregnation method was applied. The bending properties of 3 mm-thick composite showed increasing trend in all and the second-time impregnated composite had much higher value than the first-time impregnated composite. Moreover, the bending fracture mode photos showed obvious creases except for the first-time impregnated materials, which agreed well with the bending property values. The dielectric constants for the composites were complex because they had not regular value following the mixing rule of the composites, which was mainly due to the interfacial polarization and other effects in the fabrication processing.展开更多
基金the Research Fund for the Doctoral Program of Higher Education and the Shanghai Key Discipline Project
文摘A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.
文摘With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming draft creation are discussed in this paper which can be used as references to manufacture woven preforms with changing cross sections.
基金the National Natural Science Foundation of China (41674131,41574118,41974146,41904109)the Fundamental Research Funds for the Central Universities (17CX06041,17CX06044)the China National Science and Technology Major Project (2016ZX05007-004,2017ZX05072-002)
文摘Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy.
文摘The 3D orthogonal woven basalt fiber reinforced polyimide (PI) composites were fabricated and characterized in this study. The PI film was firstly prepared to determine PI processing parameters. Fourier transform infrared (FTIR) analysis showed that 300°C was the suitable imidization temperature. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed relatively good thermal properties of the PI film. In the fabrication of composites, the multi-step impregnation method was applied. The bending properties of 3 mm-thick composite showed increasing trend in all and the second-time impregnated composite had much higher value than the first-time impregnated composite. Moreover, the bending fracture mode photos showed obvious creases except for the first-time impregnated materials, which agreed well with the bending property values. The dielectric constants for the composites were complex because they had not regular value following the mixing rule of the composites, which was mainly due to the interfacial polarization and other effects in the fabrication processing.