2.488 Gb/s optical fiber transmission experiment using a domestic Ti.LiNbO<sub>3</sub> externalmodulator was demonstrated for the first time in China.A receiver sensitivity of -30.3dBmwas obtained at a BER...2.488 Gb/s optical fiber transmission experiment using a domestic Ti.LiNbO<sub>3</sub> externalmodulator was demonstrated for the first time in China.A receiver sensitivity of -30.3dBmwas obtained at a BER of 10<sup>-10</sup>after transmission through 50.7 km conventional single modefiber.展开更多
We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved withou...We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.展开更多
A 52 m/9 Gb/s four-level pulse amplitude modulation(PAM4) plastic optical fiber(POF)-underwater wireless laser transmission(UWLT) convergence with a laser beam reducer is proposed. A 52 m/9 Gb/s PAM4 POFUWLT con...A 52 m/9 Gb/s four-level pulse amplitude modulation(PAM4) plastic optical fiber(POF)-underwater wireless laser transmission(UWLT) convergence with a laser beam reducer is proposed. A 52 m/9 Gb/s PAM4 POFUWLT convergence is practically demonstrated with the application of a laser beam reducer to reduce the collimated beam diameter. A 50 m graded-index(GI)-POF is employed as an underwater extender to efficiently enhance the coverage of UWLT. The performances of PAM4 POF-UWLT convergence in view of bit error rate(BER) and eye diagrams improve with the decrease of the collimated beam diameter because of the small amount of light absorbed by clear ocean water. Competent BER and eye diagrams(three independent eye diagrams) are achieved over a 50 m GI-POF transmission with a 2 m clear ocean water link.展开更多
We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at ...We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at 5 GHz over long distance.展开更多
In this paper, the dispersion compensation of 4×10Gb/s 800km G.652 fiber by chirped optical fiber Bragg grating (FBG) was originally implemented. The characteristics of FBG are optimized, so that the ripple coeff...In this paper, the dispersion compensation of 4×10Gb/s 800km G.652 fiber by chirped optical fiber Bragg grating (FBG) was originally implemented. The characteristics of FBG are optimized, so that the ripple coefficient of reflectivity and time delay are less than 0.9dB and 30ps, respectively. When BER is 10?10, the power penalties of transmission are 1.36 dB, 0.89 dB, 1.67 dB and 1.32 dB.展开更多
We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regi...We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.展开更多
基金the High Technology Research and Development Programme of China.
文摘2.488 Gb/s optical fiber transmission experiment using a domestic Ti.LiNbO<sub>3</sub> externalmodulator was demonstrated for the first time in China.A receiver sensitivity of -30.3dBmwas obtained at a BER of 10<sup>-10</sup>after transmission through 50.7 km conventional single modefiber.
基金supported by the National Key Research and Development Program of China(Nos.2016YFB0402301 and 2017YFF0206103)the National Natural Science Foundation of China(Nos.61320106013,61635010,61474112,61574137,and 61504170)
文摘We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.
基金the financial support from the Ministry of Science and Technology of Taiwan, China (Nos. MOST 104-2221-E-027-072-MY3 and MOST 106-2221-E-027-073)
文摘A 52 m/9 Gb/s four-level pulse amplitude modulation(PAM4) plastic optical fiber(POF)-underwater wireless laser transmission(UWLT) convergence with a laser beam reducer is proposed. A 52 m/9 Gb/s PAM4 POFUWLT convergence is practically demonstrated with the application of a laser beam reducer to reduce the collimated beam diameter. A 50 m graded-index(GI)-POF is employed as an underwater extender to efficiently enhance the coverage of UWLT. The performances of PAM4 POF-UWLT convergence in view of bit error rate(BER) and eye diagrams improve with the decrease of the collimated beam diameter because of the small amount of light absorbed by clear ocean water. Competent BER and eye diagrams(three independent eye diagrams) are achieved over a 50 m GI-POF transmission with a 2 m clear ocean water link.
文摘We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at 5 GHz over long distance.
基金This work was jointly supported by the National 863 Project and the National Natural Science Foundation of China (Grant Nos. 60077008 and 69907001).
文摘In this paper, the dispersion compensation of 4×10Gb/s 800km G.652 fiber by chirped optical fiber Bragg grating (FBG) was originally implemented. The characteristics of FBG are optimized, so that the ripple coefficient of reflectivity and time delay are less than 0.9dB and 30ps, respectively. When BER is 10?10, the power penalties of transmission are 1.36 dB, 0.89 dB, 1.67 dB and 1.32 dB.
文摘We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.