Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at speci...Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at special wavelength is Raman conversion.Phosphorus-doped fiber(PDF),due to the phosphorus-related large frequency shift Raman peak at 40 THz,is a great choice for large frequency shift Raman conversion.Here,by adopting 150 m large mode area triple-clad PDF as Raman gain medium,and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission,we build a high power cladding-pumped Raman fiber laser at 1.2μm waveband.A Raman signal with power up to 735.8 W at 1252.7 nm is obtained.To the best of our knowledge,this is the highest output power ever reported for fiber lasers at 1.2μm waveband.Moreover,by tuning the wavelength of the pump source,a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated.This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme,thus providing a good solution for a high power laser source at special waveband.展开更多
Based on a silicon platform, we design and fabricate a four-mode division(de)multiplexer for chip-scale optical data transmission in the 2 μm waveband for the first time, to the best of our knowledge. The(de)multiple...Based on a silicon platform, we design and fabricate a four-mode division(de)multiplexer for chip-scale optical data transmission in the 2 μm waveband for the first time, to the best of our knowledge. The(de)multiplexer is composed of three tapered directional couplers for both mode multiplexing and demultiplexing processes. In the experiment, the average crosstalk for four channels is measured to be less than-18 dB over a wide wavelength range(70 nm) from 1950 to 2020 nm, and the insertion losses are also assessed. Moreover, we further demonstrate stable 5 Gbit/s direct modulation data transmission through the fabricated silicon photonic devices with nonreturn-to-zero on–off keying signals. The experimental results show clear eye diagrams, and the penalties at a bit error rate of 3.8 × 10-3 are all less than 2.5 dB after on-chip data transmission. The obtained results indicate that the presented silicon four-mode division multiplexer in the mid-infrared wavelength band might be a promising candidate facilitating chip-scale high-speed optical interconnects.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.61635005,61905284,and 62305391)the National Postdoctoral Program for Innovative Talents(No.BX20190063).
文摘Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at special wavelength is Raman conversion.Phosphorus-doped fiber(PDF),due to the phosphorus-related large frequency shift Raman peak at 40 THz,is a great choice for large frequency shift Raman conversion.Here,by adopting 150 m large mode area triple-clad PDF as Raman gain medium,and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission,we build a high power cladding-pumped Raman fiber laser at 1.2μm waveband.A Raman signal with power up to 735.8 W at 1252.7 nm is obtained.To the best of our knowledge,this is the highest output power ever reported for fiber lasers at 1.2μm waveband.Moreover,by tuning the wavelength of the pump source,a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated.This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme,thus providing a good solution for a high power laser source at special waveband.
基金National Natural Science Foundation of China(NSFC)(61761130082,11574001,11774116,61705072)Royal Society-Newton Advanced Fellowship+4 种基金National Program for Support of Top-notch Young ProfessionalsNatural Science Foundation of Hubei Province(2018CFA048,ZRMS2017000413)Beijing University of Posts and Telecommunications(BUPT))(IPOC2018A002)Program for HUST Academic Frontier Youth Team(2016QYTD05)Fundamental Research Funds for the Central Universities(2019kfyRCPY037)
文摘Based on a silicon platform, we design and fabricate a four-mode division(de)multiplexer for chip-scale optical data transmission in the 2 μm waveband for the first time, to the best of our knowledge. The(de)multiplexer is composed of three tapered directional couplers for both mode multiplexing and demultiplexing processes. In the experiment, the average crosstalk for four channels is measured to be less than-18 dB over a wide wavelength range(70 nm) from 1950 to 2020 nm, and the insertion losses are also assessed. Moreover, we further demonstrate stable 5 Gbit/s direct modulation data transmission through the fabricated silicon photonic devices with nonreturn-to-zero on–off keying signals. The experimental results show clear eye diagrams, and the penalties at a bit error rate of 3.8 × 10-3 are all less than 2.5 dB after on-chip data transmission. The obtained results indicate that the presented silicon four-mode division multiplexer in the mid-infrared wavelength band might be a promising candidate facilitating chip-scale high-speed optical interconnects.