期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seismogenic fault and topography control on the spatial patterns of landslides triggered by the 2017 Jiuzhaigou earthquake 被引量:16
1
作者 WU Chun-hao CUI Peng +3 位作者 LI Yu-sheng Irasema Alcántara AYALA HUANG Chao YI Shu-jian 《Journal of Mountain Science》 SCIE CSCD 2018年第4期793-807,共15页
Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to t... Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to the west of a major scenic area, causing 25 deaths and injuring 525, and the Park was seriously affected. The objective of this study was to explore the controls of seismogenic fault and topographic factors on the spatial patterns of these landslides. Immediately after the main shock, field survey, remote-sensing investigations, and statistical and spatial analysis were undertaken. At least 2212 earthquake-triggered landslides were identified, covering a total area of 11.8 km^2. Thesewere mainly shallow landslides and rock falls. Results demonstrated that landslides exhibited a close spatial correlation with seismogenic faults. More than 85% of the landslides occurred at 2200 to 3700 m elevations. The largest quantity of landslides was recorded in places with local topographic reliefs ranging from 200 to 500 m. Slopes in the range of ~20°-50° are the most susceptible to failure. Landslides occurred mostly on slopes facing east-northeast(ENE), east(E), east-southeast(ESE), and southeast(SE), which were nearly vertical to the orientation of the seismogenic fault slip. The back-slope direction and thin ridge amplification effects were documented. These results provide insights on the control of the spatial pattern of earthquake-triggered landslides modified by the synergetic effect of seismogenic faults and topography. 展开更多
关键词 2017 jiuzhaigou earthquake LANDSLIDE Seismogenic fault TOPOGRAPHY Spatial pattern
下载PDF
Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China 被引量:8
2
作者 CHEN Xiao-qing CHEN Jian-gang +6 位作者 CUI Peng YOU Yong HU Kai-heng YANG Zong-ji ZHANG Wei-feng LI Xin-po WU Yong 《Journal of Mountain Science》 SCIE CSCD 2018年第4期779-792,共14页
On August 8, 2017, a Ms = 7.0 magnitude earthquake occurred in the Jiuzhaigou Valley, in Sichuan Province, China(N: 33.20°, E: 103.82°). Jiuzhaigou Valley is an area recognized and listed as a world heritage... On August 8, 2017, a Ms = 7.0 magnitude earthquake occurred in the Jiuzhaigou Valley, in Sichuan Province, China(N: 33.20°, E: 103.82°). Jiuzhaigou Valley is an area recognized and listed as a world heritage site by UNESCO in 1992. Data analysis and field survey were conducted on the landslide, collapse, and debris flow gully, to assess the coseismic geological hazards generated by the earthquake using an unmanned aerial vehicle(UAV), remote-sensing imaging, laser range finders, geological radars, and cameras. The results highlighted the occurrence of 13 landslides, 70 collapses, and 25 potential debris flow gullies following the earthquake. The hazards were classified on the basis of their size and the potential property loss attributable to them. Consequently, 14 large-scale hazards, 30 medium-sized hazards, and 64 small hazards accounting for 13%, 28%, and 59% of the total hazards, respectively, were identified. Based on the variation tendency of the geological hazards that ensued in areas affected by the Kanto earthquake(Japan), Chi-chi earthquake(Taiwan China), and Wenchuan earthquake(Sichuan China), the study predicts that, depending on the rain intensity cycle, the duration of geological hazard activities in the Jiuzhaigou Valley may last over ten years and will gradually decrease for the following five to ten yearsbefore returning to pre-earthquake levels. Thus,necessary monitoring and early warning systems must be implemented to ensure the safety of residents,workers and tourists during the construction of engineering projects and reopening of scenic sites to the public. 展开更多
关键词 2017 jiuzhaigou earthquake Disaster risk Geological hazard LANDSLIDE World heritage site jiuzhaigou Valley
下载PDF
Coseismic fault model of the 2017 M_(W)6.5 Jiuzhaigou earthquake and implications for the regional fault slip pattern 被引量:1
3
作者 Yang Liu Yangmao Wen +2 位作者 Zhicai Li Ying Peng Caijun Xu 《Geodesy and Geodynamics》 CSCD 2022年第2期104-113,共10页
On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model w... On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation. 展开更多
关键词 2017 M_(W)6.5 jiuzhaigou earthquake INSAR Fault model Boundary element method Regional fault slip pattern
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部