期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Apparent stress as an indicator of stress meta-instability:The 2021 M_(S)6.4 Yangbi earthquake in Yunnan,China
1
作者 Yan′e Li Xuezhong Chen +2 位作者 Lijuan Chen Yaqiong Ren Xiangyun Guo 《Earthquake Science》 2023年第6期433-444,共12页
Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stres... Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake. 展开更多
关键词 2021 M_(S)6.4 yangbi earthquake apparent stress relative change meta-instability
下载PDF
Temporal evolution of the focal mechanism consistency of the 2021 Yangbi M_(S) 6.4 earthquake sequence in Yunnan 被引量:2
2
作者 Xiaobin Li Mingpei Jin +3 位作者 Ya Huang Wenjian Cha Jun Wang Sihai Li 《Earthquake Research Advances》 CSCD 2022年第2期11-20,共10页
Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum ... Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle.Our results indicate that the M_(S)6.4 mainshock is induced by a lateral strike slip fault(with a rake angle of~-165°)and a little normal-faulting component event along a nearly vertical plane(dipping angle~79° and strike~138°).Combining our results with high resolution catalog,we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault.The focal mechanism evolution can be divided into three periods.During the first period,the foreshock sequence,the focal mechanism consistency is the highest(KA<36°);during the second period which is shortly after the mainshock,the focal mechanism shows strong variation with KA ranging from 8° to 110°;during the third period,the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period(18°<KA<73°).We suggest that the KA,to some extent,represents the coherence between local tectonic stress regime and the stress state of each individual earthquake.Furthermore,high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence. 展开更多
关键词 Cut and Paste Focal mechanism solution Consistency parameters Aftershock spreading Seismogenic fault earthquake trend The yangbi M_(S)6.4 earthquake in 2021
下载PDF
Lithospheric Equilibrium and Anisotropy around the 2021 Yangbi Ms 6.4 Earthquake in Yunnan,China
3
作者 Guangyu Fu Zhenyu Wang +1 位作者 Jingsong Liu Yun Wang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第4期1165-1175,共11页
Using the gravity/GNSS data of 318 stations observed in 2020,this paper optimizes the Bouguer and free-air gravity anomalies around the 2021 Yangbi Ms 6.4 Earthquake,inverses the lithospheric density structure of the ... Using the gravity/GNSS data of 318 stations observed in 2020,this paper optimizes the Bouguer and free-air gravity anomalies around the 2021 Yangbi Ms 6.4 Earthquake,inverses the lithospheric density structure of the focal area,and obtains the distribution of isostatic additional force borne by the lithosphere.The results show that the Bouguer gravity anomaly in western Yunnan varies from-120 to-360 m Gal.As a whole the anomalies are large in the north and small in the south,and the value in the source area of the 2021 Yangbi Ms 6.4 Earthquake is about-260 m Gal.Significant lateral differences indicates that the crust around the great earthquake does not belong to a solid and stable tectonic unit.The lithosphere in the source area is basically in equilibrium,indicating that the occurrence of the great event is not relative to the lithospheric equilibrium,but to the differential movement of the crust in the horizontal direction.In addition,we obtain the teleseismic SKS phases of 51 stations.As a whole,the polarization direction of fast wave in western Yunnan is approximately vertical to the maximum gradient change direction of regional Bouguer gravity anomaly that reflects the change of Moho. 展开更多
关键词 the 2021 yangbi Ms 6.4 earthquake Bouguer gravity anomaly density structure litho-spheric equilibrium shear waves shear wave splitting.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部