期刊文献+
共找到308篇文章
< 1 2 16 >
每页显示 20 50 100
Microstructure evolution and mechanical properties of ultrasonic-assisted soldering joints of 2024 aluminum alloys 被引量:2
1
作者 李远星 赵维巍 +3 位作者 冷雪松 付秋娇 王雷 闫久春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1937-1943,共7页
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u... Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints. 展开更多
关键词 2024 aluminum alloys BRAZING SOLDERING ultrasonic-assisted soldering Zn-5Al filler metal
下载PDF
Numerical simulation for macrosegregation in direct-chill casting of 2024 aluminum alloy with an extended continuum mixture model 被引量:9
2
作者 Hai-jun LUO Wan-qi JIE +1 位作者 Zhi-ming GAO Yong-jian ZHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期1007-1015,共9页
An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the ... An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures. 展开更多
关键词 direct-chill casting MACROSEGREGATION numerical simulation continuum model 2024 aluminum alloy
下载PDF
EFFECT OF LOW-FREQUENCY ELECTROMAGNETIC FIELD ON THE AS-CASTING MICROSTRUCTURES AND MECHANICAL PROPERTIES OF HDC 2024 ALUMINUM ALLOY 被引量:4
3
作者 Q.F. Zhu Z.H. Zhao J.Z. Cui Y.B. Zuo F. Qu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期205-210,共6页
The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were pro... The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field. 展开更多
关键词 Horizontal direct chill casting Low frequency electromagnetic field 2024 aluminum alloy MICROSTRUCTURES MACROSEGREGATION
下载PDF
Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy 被引量:4
4
作者 M.H.GHONCHEH S.G.SHABESTARI +1 位作者 A.ASGARI M.KARIMZADEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期848-857,共10页
Two theoretical criteria represented by Katgerman, and Clyne and Davies for prognosticating hot tearing sensitivity were compared. Both unrefined and grain-refined samples of Al2024 alloy were solidified at various co... Two theoretical criteria represented by Katgerman, and Clyne and Davies for prognosticating hot tearing sensitivity were compared. Both unrefined and grain-refined samples of Al2024 alloy were solidified at various cooling rates ranging from 0.4 to 17.5 °C/s. Thermal analysis was used to detect dendrite coherency point and temperature of eutectic reaction. Curves of solid and liquid fractions were plotted based on Newtonian method to determine hot tearing susceptible areas. The experimental results show that the most susceptible zone in which hot tearing can occur in Al2024 is where Al_2CuMg intermetallic compound forms as a eutectic phase at last stage of mushy-state interval. Also, both criteria are in a good agreement with each other at high cooling rates used in direct-chill casting process while Clyne and Davies' model is more acceptable to determine hot tearing tendency from low to medium cooling rates. 展开更多
关键词 2024 aluminum alloy dendrite coherency direct-chill casting thermal analysis hot tearing
下载PDF
Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress 被引量:3
5
作者 李桂荣 薛飞 +4 位作者 王宏明 郑瑞 朱弋 储强泽 程江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期262-270,共9页
In order to explore the dependence of plasticity of metallic material on a high magnetic held,the effects of the different magnetic induction intensities(H = 0 T,0.5 T,1 T,3 T,and 5 T) and pulses number(N = 0,10,20... In order to explore the dependence of plasticity of metallic material on a high magnetic held,the effects of the different magnetic induction intensities(H = 0 T,0.5 T,1 T,3 T,and 5 T) and pulses number(N = 0,10,20,30,40,and 50) on tensile strength(σ;) and elongation(δ) of 2024 aluminum alloy are investigated in the synchronous presences of a high magnetic held and external stress.The results show that the magnetic held exerts apparent and positive effects on the tensile properties of the alloy.Especially under the optimized condition of H;=1 T and N;=30,the σ;and 8 are 410 MPa and 17% that are enhanced by 9.3% and 30.8% respectively in comparison to those of the untreated sample.The synchronous increases of tensile properties are attributed to the magneto-plasticity effect on a quantum scale.That is,the magnetic held will accelerate the state conversion of radical pair generated between the dislocation and obstacles from singlet to the triplet state.The bonding energy between them is meanwhile lowered and the moving flexibility of dislocations will be enhanced.At H;= 1 T and N;= 30,the dislocation density is enhanced by 1.28 times.The relevant minimum grain size is 266.1 nm,which is reduced by 35.2%.The grain rehning is attributed to the dislocation accumulation and subsequent dynamic recrystallization.The(211) and(220) peak intensities are weakened.It is deduced that together with the recrystallization,the hne grains will transfer towards the slip plane and contribute to the slipping deformation. 展开更多
关键词 2024 aluminum alloy tensile strength ELONGATION magneto plasticity effect
下载PDF
Effects of KMnO_4 on microstructure and corrosion resistance of microarc oxidation coatings on 2024 aluminum alloy 被引量:2
6
作者 杨巍 蒋百灵 +1 位作者 时惠英 鲜林云 《Journal of Central South University》 SCIE EI CAS 2010年第2期223-227,共5页
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s... Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely. 展开更多
关键词 2024 aluminum alloy KMNO4 microarc oxidation MICROSTRUCTURE corrosion resistance
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Si Cp/2024 Aluminum Matrix Composite 被引量:2
7
作者 柳培 王爱琴 +1 位作者 XIE Jingpei HAO Shiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1229-1233,共5页
SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tens... SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tensile and hardness tests. The experimental results showed that SiC particles distributed uniformly in the matrix and were in good combination with matrix. The tensile strength and hardness were improved significantly after heat treatment. With the increase of solid solution temperature, the alloy phases dissolved in the matrix gradually. When the solid solution temperature arrived at 505 ℃, the alloy phases dissolved thoroughly, and the composite exhibited the highest tensile strength and hardness(σb=360 MPa, HBS=104). The main strengthening phase was Al2Cu, which was granular and distributed dispersively in the matrix. Effect of T6 was better than that of T4 at the same solid solution temperature. 展开更多
关键词 SiCp/2024 aluminum matrix heat treatment microstructure mechanical properties
下载PDF
Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte 被引量:8
8
作者 马淞江 罗鹏 +2 位作者 周海晖 付超鹏 旷亚非 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第4期825-830,共6页
The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-... The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-treatment and the composition of the mixed electrolyte have influence on the properties of the films and the anodizing oxidation process. Under the condition of controlled potential, the anodizing oxidation current—time response curve displays "saddle" shape. First, the current density reaches a peak value of 8-20 A/dm2 and then decreases rapidly, finally maintains at 1-2 A/dm2. The film prepared in the mixed electrolyte is of porous-type with 20 nm in pore size and 500 μm-2 in porosity. Compared with the conventional anodic film obtained in sulfuric acid, the pore wall of the porous layer prepared in this work is not continuous, which seems to be deposited by small spherical grains. This porous structure of the anodic film may result from the characteristics of the mixed electrolyte and the special anodizing oxidation process. The surface analysis displays that the anodic film is amorphous and composed of O, Al, C, P, S, Si and no copper element is detected. 展开更多
关键词 2024铝合金 硼酸 混合电解液 阳极电镀 阳极薄膜
下载PDF
Forces and Stresses During Friction Stir Joining of 2024 Aluminum Alloy 被引量:1
9
作者 Deng Yongfang Zuo Dunwen Song Bo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期237-242,共6页
An attempt is made to measure three direction forces using octagonal ring dynamometer in the 2024 aluminum alloy friction stir joining(FSJ)process.A test is made to measure the specific area stress and stress distribu... An attempt is made to measure three direction forces using octagonal ring dynamometer in the 2024 aluminum alloy friction stir joining(FSJ)process.A test is made to measure the specific area stress and stress distributions in the specific area of the workpiece are obtained.The workpiece stresses in the FSJ process are analyzed by numerical simulation method.It is found that,in the downward stage of the process,feed force and lateral force in the tool are small,almost zero,and the maximum axial force can reach 12.5kN.In the stable joining stage,the forces acting on the tool become stabilized.Compared with the low speed,high feed speed results in small feed force and small lateral force,but large feed force in the stable joining stage.The stresses in three directions of feed direction,direction that perpendicular to butt face and direction perpendicular to the surface are obtained.The simulation stress value of measure point is obtained.Test and numerical simulation can authenticate each other.Both experimental stress values and numerical simulation stress values are credible. 展开更多
关键词 FRICTION STIR joining(FSJ) FORCE STRESS 2024 aluminum alloy
下载PDF
合金化因素和凝固速率对2024铝合金铸态组织的影响
10
作者 益珊珊 冯佳文 +2 位作者 刘强 肖文龙 马朝利 《航空材料学报》 CAS CSCD 北大核心 2024年第5期196-205,共10页
2024高强铝合金的铸态组织对其热加工性能及最终使用性能具有重要的影响。通过调控2024铝合金的Cu,Mg含量以及凝固速率,探究Cu/Mg质量比以及凝固速率对铸态组织的影响。结果表明:随着Cu/Mg比从2.1提高到4.1,合金中第二相种类没有发生变... 2024高强铝合金的铸态组织对其热加工性能及最终使用性能具有重要的影响。通过调控2024铝合金的Cu,Mg含量以及凝固速率,探究Cu/Mg质量比以及凝固速率对铸态组织的影响。结果表明:随着Cu/Mg比从2.1提高到4.1,合金中第二相种类没有发生变化,但Al_(2)CuMg含量逐渐下降,Al_(2)Cu和Al_(23)Cu(Fe,Mn)_(4)的含量逐渐升高。当凝固速率从0.2℃/s提高到2.4℃/s时,合金的晶粒尺寸明显细化,平均晶粒尺寸从293.0μm减小到77.0μm,枝晶变得发达,枝晶臂间距减小,并且第二相的尺寸变得细小且分布更加均匀,Al_(23)Cu(Fe,Mn)_(4)难溶相的含量明显降低。可以通过降低合金中Cu/Mg比和适当提高凝固速率来减少富铁难溶相的生成,从而改善合金的加工性能和力学性能。 展开更多
关键词 2024铝合金 Cu/Mg比 凝固速率 微观组织
下载PDF
形变退火工艺对2024铝合金性能的影响
11
作者 肖可谋 蹇海根 +3 位作者 陈淼 牌君君 伍江瑶 杨曼 《湖南工业大学学报》 2024年第4期98-106,共9页
采用正交试验法研究了形变量、预回复温度、预回复时间、退火温度和退火时间5个因素对2024铝合金力学性能和腐蚀性能的影响。结果表明:各因素对材料性能的影响显著,其中对力学性能影响最大的因素为退火温度,对腐蚀性能影响最大和最小的... 采用正交试验法研究了形变量、预回复温度、预回复时间、退火温度和退火时间5个因素对2024铝合金力学性能和腐蚀性能的影响。结果表明:各因素对材料性能的影响显著,其中对力学性能影响最大的因素为退火温度,对腐蚀性能影响最大和最小的因素分别为形变量和退火时间。通过正交优化得到的最佳形变退火工艺如下:形变量为80%,且在220℃温度下预回复120 min,320℃温度下退火10 min,此工艺下获得的合金具较好综合性能,样品显微硬度、抗拉强度、屈服强度、延伸率、腐蚀深度、R_(p)和I_(corr)分别为74.49 HV、217.17 MPa、185.84 MPa、13.53%、55.4μm、3885.6Ω·cm^(-2)和9.42E-06A·cm^(-2)。 展开更多
关键词 2024铝合金 形变退火工艺 力学性能 腐蚀性能
下载PDF
交变法向载荷下2024铝合金微动疲劳断口分析
12
作者 张育轩 李欣 +2 位作者 杨建伟 田帅 刘乐强 《热加工工艺》 北大核心 2024年第18期79-83,89,共6页
针对机械结构中广泛存在的微动疲劳失效问题,利用可施加交变法向载荷与远端载荷的双轴加载微动疲劳试验系统,研究了在交变法向载荷作用下,局部滑移和全局滑移两种运行机制对2024铝合金疲劳断裂的影响。利用扫描电镜对疲劳断口进行微观... 针对机械结构中广泛存在的微动疲劳失效问题,利用可施加交变法向载荷与远端载荷的双轴加载微动疲劳试验系统,研究了在交变法向载荷作用下,局部滑移和全局滑移两种运行机制对2024铝合金疲劳断裂的影响。利用扫描电镜对疲劳断口进行微观分析。结果表明:局部滑移与全局滑移两种运行机制下裂纹均萌生在试件与微动垫接触边界,局部滑移试件是由于接触边界产生多个裂纹并不断融合扩展导致试件断裂,全局滑移试件为单一裂纹源导致的试件断裂。在裂纹扩展区可看到疲劳辉纹与2024铝合金中的加强相,铝合金中的加强相可阻碍裂纹扩展。除此以外还可清晰的看到大量解理、准解理、撕裂棱形貌;疲劳瞬断存在大量韧窝以及二次裂纹,表现出典型韧性断裂特征。 展开更多
关键词 2024铝合金 断口分析 微动疲劳 交变法向载荷
下载PDF
大尺寸2024-T351铝合金喷丸成形曲率变化规律研究
13
作者 尹佳 贾保国 +4 位作者 杨辉 徐刚 胡彦华 李凡 王安恒 《精密成形工程》 北大核心 2024年第3期165-170,共6页
目的以喷丸成形工艺下的2024-T351铝合金平板件和单筋件为研究对象,分析弦向及展向曲率半径试验值与拟合值的变形规律。方法针对试件厚度、喷丸压力、喷丸速度、预弯量4个参数进行喷丸成形操作的正交试验,通过测量成形后曲率的变化规律... 目的以喷丸成形工艺下的2024-T351铝合金平板件和单筋件为研究对象,分析弦向及展向曲率半径试验值与拟合值的变形规律。方法针对试件厚度、喷丸压力、喷丸速度、预弯量4个参数进行喷丸成形操作的正交试验,通过测量成形后曲率的变化规律,分析不同参数组合对平板件和单筋件成形变化规律的影响。结果在不考虑材料性能波动的情况下,随着平板件厚度和喷丸速度的增大,平板试件的弦向曲率半径和展向曲率半径均呈递增趋势;而随着喷丸压力的增大,平板试件的弦向曲率半径和展向曲率半径则呈现递减趋势,即当平板件厚度和喷丸速度增大时,喷丸成形对平板试件弯曲的影响程度有所增大,曲率半径减小;反之,喷丸成形对平板试验件弯曲的影响程度减小,曲率半径增大。结论在忽略初始状态并将其假设为自由状态或给定预弯量状态的条件下,随着喷丸速度的增大,单筋试件的曲率半径递增,试验值与拟合值的变化趋势基本相符,二者最大偏差为11.2%。 展开更多
关键词 喷丸成形 2024-T351铝合金 曲率半径 正交实验 喷丸速度
下载PDF
铸轧速度对液-固铸轧1070A/2024铝合金复合板组织性能的影响研究
14
作者 田双永 刘浩玮 +2 位作者 张丁丁 徐振 李玉涛 《有色金属加工》 CAS 2024年第5期12-18,共7页
采用立式双辊铸轧机制备了铸轧速度分别为14 m/min、12 m/min、10 m/min、8 m/min的液-固铸轧1070A/2024铝合金复合板,使用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、硬度计和剪切实验等检测手段,研究了铸轧速度对液-固铸轧1070A/... 采用立式双辊铸轧机制备了铸轧速度分别为14 m/min、12 m/min、10 m/min、8 m/min的液-固铸轧1070A/2024铝合金复合板,使用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、硬度计和剪切实验等检测手段,研究了铸轧速度对液-固铸轧1070A/2024铝合金复合板材界面组织性能的影响。结果表明,随着铸轧速度的降低,复合界面处金属间化合物呈先增加后减少的变化趋势,复合界面硬度先增大后减小,铸轧速度为10 m/min时达到最高值129.5HV0.1;剪切强度呈先升高后降低而后再次升高的波浪状变化规律,铸轧速度为12 m/min时到达最大值80.7 MPa。 展开更多
关键词 铸轧速度 1070A/2024铝合金复合板 剪切强度
下载PDF
激光清洗2024铝合金氧化膜的数值模拟与技术研究
15
作者 梁天亮 王蔚 《机械工程师》 2024年第9期44-46,共3页
通过建立激光清洗2024铝合金氧化膜有限元模型,得到了激光清洗氧化膜过程中铝合金表面温度变化规律;分别探究了不同激光能量密度和激光清洗速度对其表面温度变化的影响,其中,能量密度越大,铝合金表面氧化膜温度上升速率越高,铝合金氧化... 通过建立激光清洗2024铝合金氧化膜有限元模型,得到了激光清洗氧化膜过程中铝合金表面温度变化规律;分别探究了不同激光能量密度和激光清洗速度对其表面温度变化的影响,其中,能量密度越大,铝合金表面氧化膜温度上升速率越高,铝合金氧化膜的表面温度随着清洗速度的增加而缓慢下降。随后,进行纳秒脉冲激光清洗2024铝合金氧化膜实验,探究激光功率、脉冲频率及清洗速度对清洗前后表面形貌的影响。研究结果表明,在激光功率为400 W、激光频率为4.5k Hz、清洗速度为5 mm/s时能完全去除表面氧化膜,并且不损伤铝合金基体;在此激光清洗参数下,清洗后铝合金基体微观形貌完好,氧元素质量分数为10.03%。 展开更多
关键词 激光清洗 2024铝合金 铝合金氧化膜 有限元模型 表面形貌 工艺参数
下载PDF
Effects of magnesium chloride-based multicomponent salts on atmospheric corrosion of aluminum alloy 2024 被引量:6
16
作者 王彬彬 王振尧 +2 位作者 韩薇 汪川 柯伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1199-1208,共10页
Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt... Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt contained in the salt water were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), X-ray diffraction (XRD), infrared transmission spectroscope (IR), and atmospheric corrosion monitor (ACM). The results showed that, with the deposition, atmospheric corrosion of AA2024 could occur when the relative humidity (RH) was lower than 30%. A main crystalline component of corrosion products, layered double hydroxides (LDH), [Mg1-xAlx(OH)2]^x+ Clx-·mH2O (LDH-C1), was determined, which meant that magnesium ion played an important role in the corrosion process. It not only facilitated the corrosion as a result of deliquescence, but also was involved in the corrosion process as a reactant. 展开更多
关键词 aluminum alloy 2024 atmospheric corrosion magnesium chloride relative humidity corrosion products
下载PDF
Fatigue Induced Alteration of the Superficial Strength Properties of 2024 Aluminum Alloy 被引量:2
17
作者 K.-D. Bouzakis I. Mirisidis +1 位作者 Sp.G. Pantelakis A.N. Chamos 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第9期776-784,共9页
aluminum alloy 2024 T3 specimens have been subjected to constant amplitude fatigue loading at R=0.1. During fatigue, an appreciable increase of the surface hardness of the material at the meso-scale can be observed an... aluminum alloy 2024 T3 specimens have been subjected to constant amplitude fatigue loading at R=0.1. During fatigue, an appreciable increase of the surface hardness of the material at the meso-scale can be observed and captured by means of nanoindentations. Surface hardness increases with increasing fatigue stress amplitude and advancing number of applied fatigue cycles. Observed increase of specimen surface hardening degree during fatigue causes an evolution of superficial mechanical strength properties of the alloy. Stress-strain curves associated with the evoluting superficial mechanical properties are derived, employing a developed finite element method (FEM)-supported evaluation procedure of nanoindentation experimental results. 展开更多
关键词 2024 aluminum alloy Nanoindentations Fatigue loading Stress-strain curves
原文传递
Deformation Behavior and Microstructure Evolution of AA2024-H18 Aluminum Alloy by Hot Forming with Synchronous Cooling Operations 被引量:2
18
作者 Chen Guoliang Chen Minghe +1 位作者 Wang Ning Sun Jiawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期504-513,共10页
Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mec... Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mechanical properties.However,the deformation behavior and microstructure evolution of the alloys during HFSC are complex and need to be studied due to the temperature and strain rate effects.Uniaxial tensile tests in a temperature range of 250—450℃and a strain rate range of 0.01—1 s-1 for AA2024-H18 aluminum alloy sheet are conducted with a Gleeble-3500 Thermal-Mechanical Simulation Tester.And based on metallography observation and analysis,AA2024-H18 aluminum alloy sheet in HSFC process exhibits hardening and dynamic recovery behaviors within the temperature range of 250—450 ℃.Strain rate shows different effects on ductility at different temperatures.Compared with traditional warm/hot forming methods,AA2024-H18 aluminum alloy achieves a better work-hardening result through HFSC operations,which promises an improved formability at elevated temperature and thus good mechanical properties of final part.After HSFC operations,the microstructure of the specimens is composed of elongated static recrystallization grain. 展开更多
关键词 hot forming with synchronous cooling AA2024 aluminum alloy deformation behavior microstructure evolution
下载PDF
Grain refining in weld metal using short-pulsed laser ablation during CW laser welding of 2024-T3 aluminum alloy 被引量:2
19
作者 Masaki Kasuga Tomokazu Sano Akio Hirose 《International Journal of Extreme Manufacturing》 2019年第4期34-41,共8页
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a... The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region. 展开更多
关键词 2024 aluminum alloy hot cracking laser welding grain refinement dendrite fragmentation short pulsed laser laser ablation
下载PDF
2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测 被引量:3
20
作者 王磊 李东侠 +2 位作者 回丽 沈振鑫 周松 《焊接学报》 EI CAS CSCD 北大核心 2023年第4期77-83,I0007,I0008,共9页
基于ABAQUS与FRANC 3D联合仿真的方法,对2024-T4铝合金搅拌摩擦焊接头预制裂纹于不同部位的紧凑拉伸试样进行裂纹扩展分析以及寿命预测,并深入分析不同部位裂纹扩展行为存在差异性的原因.结果表明,随着裂纹长度的不断延长,裂纹尖端应力... 基于ABAQUS与FRANC 3D联合仿真的方法,对2024-T4铝合金搅拌摩擦焊接头预制裂纹于不同部位的紧凑拉伸试样进行裂纹扩展分析以及寿命预测,并深入分析不同部位裂纹扩展行为存在差异性的原因.结果表明,随着裂纹长度的不断延长,裂纹尖端应力强度因子随之增大,且裂纹向前扩展路径基本沿直线扩展,ABAQUS与FRANC 3D联合仿真方法分析不同部位的裂纹尖端应力强度因子和裂纹扩展路径的理论计算和试验结果基本吻合,验证了分区域进行联合仿真的模型精度满足要求.不同部位裂纹扩展试样寿命预测结果与试验结果的相对误差均在5%左右,对焊接接头分区域联合仿真进行寿命预测是准确可行的.裂纹位于不同部位的扩展试样断口处的疲劳辉纹间距不同导致预制裂纹于3个部位的疲劳寿命由低到高为:热影响区、垂直于焊缝方向、焊核区. 展开更多
关键词 2024-T4铝合金 搅拌摩擦焊 FRANC 3D 裂纹扩展 寿命预测
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部