The present multi-harmonic shell clustering of a nucleus is a direct consequence of the fermionic nature of nucleons and their average sizes. The most probable form and the average size for each proton or neutron shel...The present multi-harmonic shell clustering of a nucleus is a direct consequence of the fermionic nature of nucleons and their average sizes. The most probable form and the average size for each proton or neutron shell are here presented by a specific equilibrium polyhedron of definite size. All such polyhedral shells are closely packed leading to a shell clustering of a nucleus. A harmonic oscillator potential is employed for each shell. All magic and semi-magic numbers, g.s. single particle and total binding energies, proton, neutron and mass radii of 40Ca, 48Ca, 54Fe, 90Zr, 108Sn, 114Te, 142Nd, and 208Pb are very successfully predicted.展开更多
文摘The present multi-harmonic shell clustering of a nucleus is a direct consequence of the fermionic nature of nucleons and their average sizes. The most probable form and the average size for each proton or neutron shell are here presented by a specific equilibrium polyhedron of definite size. All such polyhedral shells are closely packed leading to a shell clustering of a nucleus. A harmonic oscillator potential is employed for each shell. All magic and semi-magic numbers, g.s. single particle and total binding energies, proton, neutron and mass radii of 40Ca, 48Ca, 54Fe, 90Zr, 108Sn, 114Te, 142Nd, and 208Pb are very successfully predicted.