期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
1
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Effects of temperature and time on three-dimensional microstructural evolution of semi-solid 2A14 aluminum alloy during short process preparation of semi-solid billets
2
作者 Ying-ze LIU Ju-fu JIANG +3 位作者 Guan-fei XIAO Ying ZHANG Min-jie HUANG Ying WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2091-2109,共19页
To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined... To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined microstructure evolution,namely transverse direction(TD)surface,rolling direction(RD)surface,and normal direction(ND)surface,was studied.Effects of temperature and holding time on average grain size and average shape factor were investigated.The results showed that the optimum conditions for preparation of 2A14 semi-solid billets by this process were 615℃ and 20 min(average grain size of 124μm and shape factor of 0.81).Electron backscatter diffraction(EBSD)observations indicated that the microstructure was completely recrystallized when it was heated to 600℃.Grain size was increased with the increase of temperature and grew up slowly with the holding time prolonging.Roundness was increased with increase of holding time but was not sensitive to temperature. 展开更多
关键词 2A14 aluminum alloy three-dimensional microstructure semi-solid billet microstructure evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部