X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread appl...X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.展开更多
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to D...Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to December 2023,58 patients with right-sided colon cancer treated at the Affiliated Hospital of Hebei Engineering University were randomly divided into a 3D laparoscopy group(observation group)and a 2D laparoscopy group(control group),with 29 patients in each group.Intraoperative blood loss,postoperative time to first flatulence,length of hospital stay,and incidence of complications in both groups were recorded.Results:There was a statistically significant difference in intraoperative blood loss between the two groups(P<0.05).There was no statistically significant difference in the time to first flatulence between the groups(P>0.05).However,there was a statistically significant difference in the length of hospital stay(P<0.05)and the incidence of complications(P<0.05)between the two groups.Conclusion:3D laparoscopy for CME can reduce intraoperative blood loss,shorten hospital stay,and decrease postoperative complications,showing significant clinical advantages over traditional 2D laparoscopy.展开更多
文摘X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to December 2023,58 patients with right-sided colon cancer treated at the Affiliated Hospital of Hebei Engineering University were randomly divided into a 3D laparoscopy group(observation group)and a 2D laparoscopy group(control group),with 29 patients in each group.Intraoperative blood loss,postoperative time to first flatulence,length of hospital stay,and incidence of complications in both groups were recorded.Results:There was a statistically significant difference in intraoperative blood loss between the two groups(P<0.05).There was no statistically significant difference in the time to first flatulence between the groups(P>0.05).However,there was a statistically significant difference in the length of hospital stay(P<0.05)and the incidence of complications(P<0.05)between the two groups.Conclusion:3D laparoscopy for CME can reduce intraoperative blood loss,shorten hospital stay,and decrease postoperative complications,showing significant clinical advantages over traditional 2D laparoscopy.