特征线方法(Method of Characteristics,MOC)因其具备强大的几何处理能力,且在计算过程中亦能兼顾计算成本和计算精度,被广泛应用于高保真数值模拟计算中。常见的中子输运计算方法除MOC外,还包括碰撞概率法(Collision Probability metho...特征线方法(Method of Characteristics,MOC)因其具备强大的几何处理能力,且在计算过程中亦能兼顾计算成本和计算精度,被广泛应用于高保真数值模拟计算中。常见的中子输运计算方法除MOC外,还包括碰撞概率法(Collision Probability method,CP)和界面流法(Interface Current method,IC)等。本文从方法理论以及数值计算两方面将MOC、CP和IC进行比较分析,评估其在pin-by-pin计算中的能力。同时在MOC计算中,不同的参数选择会对计算成本和计算精度产生影响,因此有必要进行敏感性分析以寻求最佳参数。本文首先将三种计算方法从原理上进行比较分析,再基于2D C5G7-MOX基准题完成了数值计算及MOC参数敏感性初步分析。计算结果表明:MOC在计算精度、计算效率和内存开销上均优于CP和IC。MOC的计算耗时和内存开销分别为23.9 min和37.5 MB,与参考解的相对误差仅为6.04×10^(-4)。而CP和IC的计算耗时分别为MOC的56.7倍和15.6倍,内存开销分别为MOC的407.7倍和32.8倍。进一步通过参数敏感性分析发现:网格划分对计算内存开销以及计算时间的影响最大,而极角的选择对计算精度的影响最大,并且给出一组综合优化建议参数:网格划分6×6,极角为GAUS且数目为2,方位角个数为30。该组参数的计算耗时为45.4 min,内存开销为264.7 MB,相对误差为5.9×10^(-5),归一化后的栅元均方根误差为0.002 55。展开更多
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi...Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.展开更多
SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 co...SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.展开更多
文摘特征线方法(Method of Characteristics,MOC)因其具备强大的几何处理能力,且在计算过程中亦能兼顾计算成本和计算精度,被广泛应用于高保真数值模拟计算中。常见的中子输运计算方法除MOC外,还包括碰撞概率法(Collision Probability method,CP)和界面流法(Interface Current method,IC)等。本文从方法理论以及数值计算两方面将MOC、CP和IC进行比较分析,评估其在pin-by-pin计算中的能力。同时在MOC计算中,不同的参数选择会对计算成本和计算精度产生影响,因此有必要进行敏感性分析以寻求最佳参数。本文首先将三种计算方法从原理上进行比较分析,再基于2D C5G7-MOX基准题完成了数值计算及MOC参数敏感性初步分析。计算结果表明:MOC在计算精度、计算效率和内存开销上均优于CP和IC。MOC的计算耗时和内存开销分别为23.9 min和37.5 MB,与参考解的相对误差仅为6.04×10^(-4)。而CP和IC的计算耗时分别为MOC的56.7倍和15.6倍,内存开销分别为MOC的407.7倍和32.8倍。进一步通过参数敏感性分析发现:网格划分对计算内存开销以及计算时间的影响最大,而极角的选择对计算精度的影响最大,并且给出一组综合优化建议参数:网格划分6×6,极角为GAUS且数目为2,方位角个数为30。该组参数的计算耗时为45.4 min,内存开销为264.7 MB,相对误差为5.9×10^(-5),归一化后的栅元均方根误差为0.002 55。
基金supported by grants from the National Key Research and Development Program of China,No.2017YFA0105400(to LR)the Key Research and Development Program of Guangdong Province,No.2019B020236002(to LR)the National Natural Science Foundation of China,Nos.81972111(to LZ),81772349(to BL).
文摘Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.
文摘SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.