Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
In this paper,we propose improved approaches for two-dimensional(2 D) direction-of-arrival(DOA) estimation for a uniform rectangular array(URA).Unlike the conventional eigenstructure-based estimation approaches such a...In this paper,we propose improved approaches for two-dimensional(2 D) direction-of-arrival(DOA) estimation for a uniform rectangular array(URA).Unlike the conventional eigenstructure-based estimation approaches such as Multiple Signals Classification(MUSIC) and Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT),the proposed approaches estimate signal and noise subspaces with Nystr?m approximation,which only need to calculate two sub-matrices of the whole sample covariance matrix and avoid the need to directly calculate the eigenvalue decomposition(EVD) of the sample covariance matrix.Hence,the proposed approaches can improve the computational efficiency greatly for large-scale URAs.Numerical results verify the reliability and efficiency of the proposed approaches.展开更多
为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(...为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(two dimensional direction of arrival,2D-DOA)高效估计算法。首先根据跳频信号的时频域特征,构建每一跳的空时频矩阵(spatial time-frequency distribution,STFD),获取时频域的协方差矩阵;然后将共轭子空间的思想引入到MUSIC算法中,通过对噪声子空间及其共轭的交集进行奇异值分解,实现噪声子空间的降维;最终通过半谱搜索实现2D-DOA的高效估计。同时为了提高低信噪比条件下算法的性能,在时频图处理过程中采用形态学滤波进行去噪,并在修正的时频图上完成了跳频信号每一跳的提取。通过理论论证和实验仿真表明,本文算法相比于MUSIC算法,在保证均方根误差相当和估计成功率有所提高的情况下,计算复杂度降低了一半。展开更多
针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(no...针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(non-circular estimation of signal parameters via rotation invariant technique,NC-ESPRIT),充分利用非圆信号的阵列扩展性,将DOA与极化参数去耦合,在此基础上,对俯仰与方位角度参数分维处理,在未知极化参数的情况下,实现了2D的分维估计。针对相干源情况,推导了锥面共形阵列非圆信号解相干空间平滑算法,通过解相干预处理,保证了所提算法对相干信号的适用性,扩展了算法的应用范围。计算机仿真实验表明,所提方法在信噪比较低(小于10dB)时,较之已有算法大大提升了DOA估计精度,达到了较好的效果。展开更多
本文以空间任意分布的传感器阵列为例,提出一种有效的二维波达方向(Two-Dimensional Direction of Arrival,2D DOA)检测算法。在分析MUSIC算法原理以及谱峰分布特征的基础上,通过步长设置,由局部逐步逼近全局最优,成功进行2D DOA检测,...本文以空间任意分布的传感器阵列为例,提出一种有效的二维波达方向(Two-Dimensional Direction of Arrival,2D DOA)检测算法。在分析MUSIC算法原理以及谱峰分布特征的基础上,通过步长设置,由局部逐步逼近全局最优,成功进行2D DOA检测,避免了穷尽搜索。仿真结果表明,在信噪比、快拍数、阵元个数变化下本文算法具有很高的检测效率。展开更多
为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互...为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。展开更多
采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏...采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏阵列虚拟孔洞填充的二维DOA估计算法,利用双稀疏线阵扩展生成两个不同的虚拟阵列,并利用其中一阵的信息去填充另一阵的孔洞。为尽可能减少总阵元数目,采用提前计算的孔洞位置去设计另一阵列的排布规则,并通过求根多重信号分类(Root-Mutiple Signal Classification,Root-MUSIC)算法替代传统的二维谱峰搜索算法完成对入射角度的估计与自动匹配。实验仿真结果验证了所提算法相比传统算法能以更少的阵元获得更高的估计精度。展开更多
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
基金supported by"the Fundamental Research Funds for the Central Universities No.2017JBM016"
文摘In this paper,we propose improved approaches for two-dimensional(2 D) direction-of-arrival(DOA) estimation for a uniform rectangular array(URA).Unlike the conventional eigenstructure-based estimation approaches such as Multiple Signals Classification(MUSIC) and Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT),the proposed approaches estimate signal and noise subspaces with Nystr?m approximation,which only need to calculate two sub-matrices of the whole sample covariance matrix and avoid the need to directly calculate the eigenvalue decomposition(EVD) of the sample covariance matrix.Hence,the proposed approaches can improve the computational efficiency greatly for large-scale URAs.Numerical results verify the reliability and efficiency of the proposed approaches.
文摘为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(two dimensional direction of arrival,2D-DOA)高效估计算法。首先根据跳频信号的时频域特征,构建每一跳的空时频矩阵(spatial time-frequency distribution,STFD),获取时频域的协方差矩阵;然后将共轭子空间的思想引入到MUSIC算法中,通过对噪声子空间及其共轭的交集进行奇异值分解,实现噪声子空间的降维;最终通过半谱搜索实现2D-DOA的高效估计。同时为了提高低信噪比条件下算法的性能,在时频图处理过程中采用形态学滤波进行去噪,并在修正的时频图上完成了跳频信号每一跳的提取。通过理论论证和实验仿真表明,本文算法相比于MUSIC算法,在保证均方根误差相当和估计成功率有所提高的情况下,计算复杂度降低了一半。
文摘针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(non-circular estimation of signal parameters via rotation invariant technique,NC-ESPRIT),充分利用非圆信号的阵列扩展性,将DOA与极化参数去耦合,在此基础上,对俯仰与方位角度参数分维处理,在未知极化参数的情况下,实现了2D的分维估计。针对相干源情况,推导了锥面共形阵列非圆信号解相干空间平滑算法,通过解相干预处理,保证了所提算法对相干信号的适用性,扩展了算法的应用范围。计算机仿真实验表明,所提方法在信噪比较低(小于10dB)时,较之已有算法大大提升了DOA估计精度,达到了较好的效果。
文摘本文以空间任意分布的传感器阵列为例,提出一种有效的二维波达方向(Two-Dimensional Direction of Arrival,2D DOA)检测算法。在分析MUSIC算法原理以及谱峰分布特征的基础上,通过步长设置,由局部逐步逼近全局最优,成功进行2D DOA检测,避免了穷尽搜索。仿真结果表明,在信噪比、快拍数、阵元个数变化下本文算法具有很高的检测效率。
文摘为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。
文摘采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏阵列虚拟孔洞填充的二维DOA估计算法,利用双稀疏线阵扩展生成两个不同的虚拟阵列,并利用其中一阵的信息去填充另一阵的孔洞。为尽可能减少总阵元数目,采用提前计算的孔洞位置去设计另一阵列的排布规则,并通过求根多重信号分类(Root-Mutiple Signal Classification,Root-MUSIC)算法替代传统的二维谱峰搜索算法完成对入射角度的估计与自动匹配。实验仿真结果验证了所提算法相比传统算法能以更少的阵元获得更高的估计精度。