The author studies the 2D isentropic Euler equations with the ideal gas law.He exhibits a set of smooth initial data that give rise to shock formation at a single point near the planar symmetry.These solutions to the ...The author studies the 2D isentropic Euler equations with the ideal gas law.He exhibits a set of smooth initial data that give rise to shock formation at a single point near the planar symmetry.These solutions to the 2D isentropic Euler equations are associated with non-zero vorticity at the shock and have uniform-in-time-1/3-Holder bound.Moreover,these point shocks are of self-similar type and share the same profile,which is a solution to the 2D self-similar Burgers equation.The proof of the solutions,following the 3D construction of Buckmaster,Shkoller and Vicol(in 2023),is based on the stable 2D self-similar Burgers profile and the modulation method.展开更多
基金supported by the China Scholarship Council(No.202106100096).
文摘The author studies the 2D isentropic Euler equations with the ideal gas law.He exhibits a set of smooth initial data that give rise to shock formation at a single point near the planar symmetry.These solutions to the 2D isentropic Euler equations are associated with non-zero vorticity at the shock and have uniform-in-time-1/3-Holder bound.Moreover,these point shocks are of self-similar type and share the same profile,which is a solution to the 2D self-similar Burgers equation.The proof of the solutions,following the 3D construction of Buckmaster,Shkoller and Vicol(in 2023),is based on the stable 2D self-similar Burgers profile and the modulation method.