In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0...We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0,110),there exist v∈C 110−ε([0,1]×T2)andθ∈C 1,120−εt 2 C 2,1 x 10−ε([0,1]×T2),which satisfy(1.1)in the sense of distribution and e(t)=ˆT2|v(t,x)|2 dx,∀t∈[0,1].展开更多
In this paper, multigrid techniques together with homotopy method are applied to propose a kind of finite-difference relaxation scheme for 2D steady-state Navier-Stokes equations. The proposed numerical scheme can giv...In this paper, multigrid techniques together with homotopy method are applied to propose a kind of finite-difference relaxation scheme for 2D steady-state Navier-Stokes equations. The proposed numerical scheme can give convergent results for viscous flows with high Reynolds number. As an example, the results of shear-driven cavity flow with high Reynolds number up to 25000 on fine grid 257×257 are given.展开更多
In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and l...In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.展开更多
In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of...In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on i, Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on i, another one is called the bending operator taking value in the normal space on i. Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stot4es equations are presented.展开更多
We prove two new regularity criteria for the 3D incompressible Navier-Stokes equations in a bounded domain. Our results also hold for the 3D Boussinesq system with zero heat conductivity.
Most freshwater fish are good at turning manoeuvres. A simulated fish tail model was numerically investigated and discussed in detail. This study deals with unsteady forces and moment exerted on the fish tail-fin in a...Most freshwater fish are good at turning manoeuvres. A simulated fish tail model was numerically investigated and discussed in detail. This study deals with unsteady forces and moment exerted on the fish tail-fin in an initial sideways stroke and a subsequent return stroke motion, and visualizes the flow fields and vortex structures, in order to explore the flow control mechanism of the typical turning motion of fish. Further discussion on fluid dynamic consequences corresponding to two different bending forms of fish tail-fins in its C-start is given. The two-dimensional unsteady incompressible Navier-Stokes equations are solved with a developed pseudo-compressibility method to simulate the flow around the fish tail-fin. The computed results and the comparison with experiments indicate that (1) fish performs a turning motion of its body using the impulsive moment produced by the to-and-fro stroke, and each stage of the process exhibits its specific hydrodynamic characteristic, (2) fishes adopt two forms of tail-tip bend (single bend and double bend) to accomplish a C-start turning manoeuvre, in dependence of their physical situations and natural environments, (3) fish can control its turning motion by modulating some key kinematic parameters.展开更多
This paper is dedicated to the expansion of the framework of general interpolant observables introduced by Azouani,Olson,and Titi for continuous data assimilation of nonlinear partial differential equations.The main f...This paper is dedicated to the expansion of the framework of general interpolant observables introduced by Azouani,Olson,and Titi for continuous data assimilation of nonlinear partial differential equations.The main feature of this expanded framework is its mesh-free aspect,which allows the observational data itself to dictate the subdivision of the domain via partition of unity in the spirit of the so-called Partition of Unity Method by Babuska and Melenk.As an application of this framework,we consider a nudging-based scheme for data assimilation applied to the context of the two-dimensional Navier-Stokes equations as a paradigmatic example and establish convergence to the reference solution in all higher-order Sobolev topologies in a periodic,mean-free setting.The convergence analysis also makes use of absorbing ball bounds in higherorder Sobolev norms,for which explicit bounds appear to be available in the literature only up to H^(2);such bounds are additionally proved for all integer levels of Sobolev regularity above H^(2).展开更多
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
基金supported by National Natural Science Foundation of China(Grant No.11971464)supported by National Natural Science Foundation of China(Grant No.11901349)supported by National Natural Science Foundation of China(Grant Nos.11471320 and 11631008)。
文摘We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0,110),there exist v∈C 110−ε([0,1]×T2)andθ∈C 1,120−εt 2 C 2,1 x 10−ε([0,1]×T2),which satisfy(1.1)in the sense of distribution and e(t)=ˆT2|v(t,x)|2 dx,∀t∈[0,1].
文摘In this paper, multigrid techniques together with homotopy method are applied to propose a kind of finite-difference relaxation scheme for 2D steady-state Navier-Stokes equations. The proposed numerical scheme can give convergent results for viscous flows with high Reynolds number. As an example, the results of shear-driven cavity flow with high Reynolds number up to 25000 on fine grid 257×257 are given.
基金Project supported by the National Natural Science Foundation of China(No.11571240)the Shenzhen Natural Science Fund of China(the Stable Support Plan Program No.20220805175116001)。
文摘In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.
基金Supported by the National High-Tech Research and Development Program of China (No. 2009AA01A135)the National Natural Science Foundation of China (Nos. 10971165, 11001216, 11071193, 10871156)the Foundation of AVIC Chengdu Aircraft Design and Research Institute
文摘In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on i, Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on i, another one is called the bending operator taking value in the normal space on i. Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stot4es equations are presented.
基金Acknowledgements Fan was supported by the National Natural Science Foundation of China (Grant No. 11171154) Li was supported by the National Natural Science Foundation of China (Grant Nos. 11271184, 11671193) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘We prove two new regularity criteria for the 3D incompressible Navier-Stokes equations in a bounded domain. Our results also hold for the 3D Boussinesq system with zero heat conductivity.
基金Project supported by the National Natural Science Fourndation of China(Grant No:10332040) and the Innovation Project of the Chinese Acadeny of Sciences (Grant No:KJCX-SW-L04).
文摘Most freshwater fish are good at turning manoeuvres. A simulated fish tail model was numerically investigated and discussed in detail. This study deals with unsteady forces and moment exerted on the fish tail-fin in an initial sideways stroke and a subsequent return stroke motion, and visualizes the flow fields and vortex structures, in order to explore the flow control mechanism of the typical turning motion of fish. Further discussion on fluid dynamic consequences corresponding to two different bending forms of fish tail-fins in its C-start is given. The two-dimensional unsteady incompressible Navier-Stokes equations are solved with a developed pseudo-compressibility method to simulate the flow around the fish tail-fin. The computed results and the comparison with experiments indicate that (1) fish performs a turning motion of its body using the impulsive moment produced by the to-and-fro stroke, and each stage of the process exhibits its specific hydrodynamic characteristic, (2) fishes adopt two forms of tail-tip bend (single bend and double bend) to accomplish a C-start turning manoeuvre, in dependence of their physical situations and natural environments, (3) fish can control its turning motion by modulating some key kinematic parameters.
基金partially supported by the award PSC-CUNY64335-0052,jointly funded by The Professional Staff Congress and The City University of New York。
文摘This paper is dedicated to the expansion of the framework of general interpolant observables introduced by Azouani,Olson,and Titi for continuous data assimilation of nonlinear partial differential equations.The main feature of this expanded framework is its mesh-free aspect,which allows the observational data itself to dictate the subdivision of the domain via partition of unity in the spirit of the so-called Partition of Unity Method by Babuska and Melenk.As an application of this framework,we consider a nudging-based scheme for data assimilation applied to the context of the two-dimensional Navier-Stokes equations as a paradigmatic example and establish convergence to the reference solution in all higher-order Sobolev topologies in a periodic,mean-free setting.The convergence analysis also makes use of absorbing ball bounds in higherorder Sobolev norms,for which explicit bounds appear to be available in the literature only up to H^(2);such bounds are additionally proved for all integer levels of Sobolev regularity above H^(2).