期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films 被引量:1
1
作者 Yue Wang Zhuang-Zhuang Ma +3 位作者 Ying Li Fei Zhang Xu Chen Zhi-Feng Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期594-601,共8页
The two-dimensional(2 D) Ruddlesden–Popper-type perovskites, possessing tunable bandgap, narrow light emission,strong quantum confinement effect, as well as a simple preparation method, are identified as a new genera... The two-dimensional(2 D) Ruddlesden–Popper-type perovskites, possessing tunable bandgap, narrow light emission,strong quantum confinement effect, as well as a simple preparation method, are identified as a new generation of candidate materials for efficient light-emitting diodes. However, the preparation of high-quality quasi-2 D perovskite films is still a challenge currently, such as the severe mixing of phases and a high density of defects within the films, impeding the further promotion of device performance. Here, we prepared the quasi-2 D PEA_(2) MA_(n-1) Pbn Br_(3 n+1) perovskite films by a modified spin-coating method, and the phases with large bandgap were effectively suppressed by the vacuum evaporation treatment. We systematically investigated the optical properties and stability of the optimized films, and the photoluminescence(PL) quantum yield of the treated films was enhanced from 23% to 45%. We also studied the emission mechanisms by temperature-dependent PL spectra. Moreover, the stability of films against moisture, ultraviolet light, and heat was also greatly improved. 展开更多
关键词 quasi-2d perovskite films vacuum evaporation optical properties STABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部