Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxi...Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxial growth of quasi-two-dimensional(Q-2D)perovskites on methylammonium lead iodide(MAPbI_(3))single crystals to form perovskite heterojunctions with interfacial bonding.The MAPbI_(3)adjacent to epitaxial Q-2D perovskite shows blue shifted photoluminescence with shortened lifetime,which becomes significant with the reduced layer number of the Q-2D perovskites.Our findings suggest the presence of an interfacial strain gradient leading to enhanced photocarrier separation.Accordingly,compared to the MAPbI_(3)single crystal detector,the BA_(2)MAPb_(2)I_(7)/MAPbI_(3)(BA:n-butylamine)heterojunction-based photodetector demonstrates a bandpass detecting property and exhibits 5 times enhanced external quantum efficiency and 83 times enhanced specific detectivity(D*=3.26×10^(11)Jones).Remarkably,the unencapsulated BA_(2)MAPb_(2)I_(7)/MAPbI_(3)heterojunction is stable in ambient condition for>300 days.The Q-2D/3D heterojunction shows suppressed ion inter-diffusion due to the presence of Q-2D phase.展开更多
FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface...FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.展开更多
基金the National Natural Science Foundation of China(Nos.52273202,62104261,51673218,and 62004066)the National Key Research and Development Program of China(No.2022YFB3803300)+4 种基金the Natural Science Program of Xinjiang Uygur Autonomous Region(No.2023D01D03)the Major Scientific and Technological Project of Changsha(No.kq2301002)the Program of Hundreds of Talents of Hunan Province and Changsha Municipal Natural Science Foundation(No.KQ2007027)the National Key Research and Development Program of China(No.2023YFE0116800)the Beijing Natural Science Foundation(No.IS23037).
文摘Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxial growth of quasi-two-dimensional(Q-2D)perovskites on methylammonium lead iodide(MAPbI_(3))single crystals to form perovskite heterojunctions with interfacial bonding.The MAPbI_(3)adjacent to epitaxial Q-2D perovskite shows blue shifted photoluminescence with shortened lifetime,which becomes significant with the reduced layer number of the Q-2D perovskites.Our findings suggest the presence of an interfacial strain gradient leading to enhanced photocarrier separation.Accordingly,compared to the MAPbI_(3)single crystal detector,the BA_(2)MAPb_(2)I_(7)/MAPbI_(3)(BA:n-butylamine)heterojunction-based photodetector demonstrates a bandpass detecting property and exhibits 5 times enhanced external quantum efficiency and 83 times enhanced specific detectivity(D*=3.26×10^(11)Jones).Remarkably,the unencapsulated BA_(2)MAPb_(2)I_(7)/MAPbI_(3)heterojunction is stable in ambient condition for>300 days.The Q-2D/3D heterojunction shows suppressed ion inter-diffusion due to the presence of Q-2D phase.
基金supported by the National Natural Science Foundation of China(Grant nos.52272201,52072136,52172229,52302303,and 51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)+1 种基金the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,2022-KF-20)Fundamental Research Funds for the Central Universities(2023IVA106)for financial support
文摘FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.