The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla...The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.展开更多
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme...To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre...Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.展开更多
Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impre...Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C-ZrB2-SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C-ZrB2-SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500℃, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact Zr O2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.展开更多
CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the cou...CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.展开更多
Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indica...Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.展开更多
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical perf...A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively.展开更多
To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of...Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.展开更多
Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the tempe...Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.展开更多
Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liqu...Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.展开更多
MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were inves...MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were investigated, and the microstructures, strength, and fatigue properties of MgAl2O4 particle-reinforced AC4C based alloy composites were evaluated. Tensile strength in the MgAl2O4 particle-reinforced AC4C based alloy composite was increased by using the classified particles. The fatigue limit at 107 cycles in the MgA1204 particle-reinforced AC4C-Cu composite increased by 27% compared to the unreinforced alloy at 250 ~C. Dislocations were observed in the matrix around the MgAl204 particle which resulted from the mismatch of thermal expansion coefficients between MgAl2O4 and Al, and resisted failure and caused fatigue cracks to propagate around the MgAl2O4 particles, resulting in extensive crack deflection and crack bowing which contributed to the improvement of fatigue strength.展开更多
The microstructure and mechanical properties of TiB_2 /B_4C composites have been investi- gated.It was found that both the strength and hardness for TiB_2 greatly increase with the ad- dition of 20 to 30 wt-% B_4C,and...The microstructure and mechanical properties of TiB_2 /B_4C composites have been investi- gated.It was found that both the strength and hardness for TiB_2 greatly increase with the ad- dition of 20 to 30 wt-% B_4C,and the fracture toughness K_(IC) value remaines on the original high level.The flexure strength,Vicker's hardness and fracture toughness are 782 MPa,26.2 GPa and 7.2 MPam^(1/2),respectively,for the TiB_2-30 wt-% B_4C composite,compared to 450 MPa,21 GPa and 7.0 MPam^(1/2) for monolithic TiB_2.The toughening and strengthening mechanisms,have also been discussed.展开更多
The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALP...The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.展开更多
Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface...Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.展开更多
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
基金financially supported by the National Key R&D Program of China(No.2022YFB3-401900)the National Natural Science Foundation of China(No.U21A20134)the Shandong Provincial Natural Science Foundation(Excellent Young Fund,No.ZR2022YQ48).
文摘The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.
基金Projects(51221001,50972120)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金The authors acknowledge funding from the National Natural Science Foundation of China(Nos.51572157,21902085,and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(No.2018JC036 and No.2018JC046)Young Scholars Program of Shandong University(No.2018WLJH25).
文摘Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.
基金Project(GFZX0101040101-2012C20X) supported by the National Basic Research Program of ChinaProject(2017JJ2320) supported by the Natural Science Foundation of Hunan Province,China
文摘Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C-ZrB2-SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C-ZrB2-SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500℃, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact Zr O2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.
基金This work was supported by the National Natural Science Foundation of China(No.52004236)Sichuan Science and Technology Program(No.2021JDRC0114)+4 种基金the Starting Project of Southwest Petroleum University(No.2019QHZ009)the China Postdoctoral Science Foundation(No.2020M673285)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University)Ministry of Education(No.202005009KF)the Chinese Scholarship Council(CSC)funding(No.202008515107).
文摘CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.
基金Projects(51472211,51502256)supported by the National Natural Science Foundation of ChinaProjects(2016GK4005,2016GK4030)supported by the Strategic New Industry of Hunan Province,ChinaProject(13C925)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.
基金Project(50571091) supported by the National Natural Science Foundation of ChinaProject(09C947) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject (2008AA030502) supported by the National High-Tech Research and Development Program of China
文摘Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.
基金Project(51101052) supported by the National Natural Science Foundation of China
文摘Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110006110025)the National Natural Science Foundation of China(Grant No.U1134102)
文摘Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.
文摘MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were investigated, and the microstructures, strength, and fatigue properties of MgAl2O4 particle-reinforced AC4C based alloy composites were evaluated. Tensile strength in the MgAl2O4 particle-reinforced AC4C based alloy composite was increased by using the classified particles. The fatigue limit at 107 cycles in the MgA1204 particle-reinforced AC4C-Cu composite increased by 27% compared to the unreinforced alloy at 250 ~C. Dislocations were observed in the matrix around the MgAl204 particle which resulted from the mismatch of thermal expansion coefficients between MgAl2O4 and Al, and resisted failure and caused fatigue cracks to propagate around the MgAl2O4 particles, resulting in extensive crack deflection and crack bowing which contributed to the improvement of fatigue strength.
文摘The microstructure and mechanical properties of TiB_2 /B_4C composites have been investi- gated.It was found that both the strength and hardness for TiB_2 greatly increase with the ad- dition of 20 to 30 wt-% B_4C,and the fracture toughness K_(IC) value remaines on the original high level.The flexure strength,Vicker's hardness and fracture toughness are 782 MPa,26.2 GPa and 7.2 MPam^(1/2),respectively,for the TiB_2-30 wt-% B_4C composite,compared to 450 MPa,21 GPa and 7.0 MPam^(1/2) for monolithic TiB_2.The toughening and strengthening mechanisms,have also been discussed.
文摘The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.
文摘Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.