期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进U-net模型的路面裂缝智能识别
被引量:
17
1
作者
陈泽斌
罗文婷
李林
《数据采集与处理》
CSCD
北大核心
2020年第2期260-269,共10页
路面裂缝快速检测及响应是道路养护部门的一项重要工作,然而传统的裂缝检测方法耗时且准确度低。因此,本文基于改进后的U-net模型实现对路面裂缝精准地自动识别。结合Canny边缘检测、Otsu阈值分割算法和人为干预手段研发一款半自动标注...
路面裂缝快速检测及响应是道路养护部门的一项重要工作,然而传统的裂缝检测方法耗时且准确度低。因此,本文基于改进后的U-net模型实现对路面裂缝精准地自动识别。结合Canny边缘检测、Otsu阈值分割算法和人为干预手段研发一款半自动标注软件,用以实现路面裂缝的像素级标注。研究以路面2D激光图像为数据集,并在此基础上通过数据增强进行数据集样本扩充,从而构建模型训练原始样本库;在实验分析阶段,使用交叉熵损失函数判断预测值与真实值的误差大小,并结合Adam算法优化模型。研究表明改进后的U-net模型在识别精度及泛化能力上均优于原U-net模型及全连接神经网络模型。该研究将为道路养护管理部门的路面病害快速检测提供技术支撑,从而利于快速响应、采取措施保证路面的行车安全。
展开更多
关键词
U-net
人工智能
2d激光图像
路面裂缝
数据增强
下载PDF
职称材料
题名
基于改进U-net模型的路面裂缝智能识别
被引量:
17
1
作者
陈泽斌
罗文婷
李林
机构
福建农林大学交通与土木工程学院
出处
《数据采集与处理》
CSCD
北大核心
2020年第2期260-269,共10页
基金
国家重点研发计划(2018YFB1201601)项目资助
国家自然科学基金青年项目(51608123)资助项目
福建省高校杰出科研人才培养计划资助项目。
文摘
路面裂缝快速检测及响应是道路养护部门的一项重要工作,然而传统的裂缝检测方法耗时且准确度低。因此,本文基于改进后的U-net模型实现对路面裂缝精准地自动识别。结合Canny边缘检测、Otsu阈值分割算法和人为干预手段研发一款半自动标注软件,用以实现路面裂缝的像素级标注。研究以路面2D激光图像为数据集,并在此基础上通过数据增强进行数据集样本扩充,从而构建模型训练原始样本库;在实验分析阶段,使用交叉熵损失函数判断预测值与真实值的误差大小,并结合Adam算法优化模型。研究表明改进后的U-net模型在识别精度及泛化能力上均优于原U-net模型及全连接神经网络模型。该研究将为道路养护管理部门的路面病害快速检测提供技术支撑,从而利于快速响应、采取措施保证路面的行车安全。
关键词
U-net
人工智能
2d激光图像
路面裂缝
数据增强
Keywords
U-net
artificial intelligence(AI)
2
d
laser image
pavement crack
d
ata augmentation
分类号
U416.2 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进U-net模型的路面裂缝智能识别
陈泽斌
罗文婷
李林
《数据采集与处理》
CSCD
北大核心
2020
17
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部