The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta...The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.展开更多
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev...In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.展开更多
X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. Howe...X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant#:82260362)in part by the National Key R&D Program of China(Grant#:2021ZD0111000)+1 种基金in part by the Key R&D Project of Hainan Province(Grant#:ZDYF2021SHFZ243)in part by the Major Science and Technology Project of Haikou(Grant#:2020-009).
文摘The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.
基金supported by the National Natural Science Foundation of China under Grant No. 61503424the Research Project by The State Ethnic Affairs Commission under Grant No. 14ZYZ017+2 种基金the Jiangsu Future Networks Innovation Institute-Prospective Research Project on Future Networks under Grant No. BY2013095-2-14the Fundamental Research Funds for the Central Universities No. FRF-TP-14-046A2the first-class discipline construction transitional funds of Minzu University of China
文摘In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.
基金Supported by the KIST institutional program(2E26880,2E26276)
文摘X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.