X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. Howe...X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.展开更多
介绍了一种基于改进SLNC(sum of local normalized correlation,SLNC)的2D-3D医学图像配准方法。首先对CT体积数据进行三线性插值,得到各向分辨率相同的体积数据,采用光线跟踪算法对其进行数字图像重建。针对不同位置和方向的重建图像,...介绍了一种基于改进SLNC(sum of local normalized correlation,SLNC)的2D-3D医学图像配准方法。首先对CT体积数据进行三线性插值,得到各向分辨率相同的体积数据,采用光线跟踪算法对其进行数字图像重建。针对不同位置和方向的重建图像,在灰度级压缩的基础上,用改进SLNC函数评价其与X线透视图像的相似性,利用与Brent相结合的Powell优化方法,搜索出相似性最大时的投影变换参数。将此方法用于移动数字X线投影设备——Biplanar 500采集的X线透视图像与相应CT体积数据的配准实验,得到较好的2D-3D图像配准效果。展开更多
The graded AlGaN:Si back barrier can form the majority of three-dimensional electron gases(3DEGs)at the GaN/graded AlGaN:Si heterostructure and create a composite two-dimensional(2D)-three-dimensional(3D)channel in Al...The graded AlGaN:Si back barrier can form the majority of three-dimensional electron gases(3DEGs)at the GaN/graded AlGaN:Si heterostructure and create a composite two-dimensional(2D)-three-dimensional(3D)channel in AlGaN/GaN/graded-AlGaN:Si/GaN:C heterostructure(DH:Si/C).Frequency-dependent capacitances and conductance are measured to investigate the characteristics of the multi-temperature trap states of in DH:Si/C and AlGaN/GaN/GaN:C heterostructure(SH:C).There are fast,medium,and slow trap states in DH:Si/C,while only medium trap states exist in SH:C.The time constant/trap density for medium trap state in SH:C heterostructure are(11μs-17.7μs)/(1.1×10^13 cm^-2·eV^-1-3.9×10^13 cm^-2·eV^-1)and(8.7μs-14.1μs)/(0.7×10^13 cm^-2·eV^-1-1.9×10^13 cm^-2·eV^-1)at 300 K and 500 K respectively.The time constant/trap density for fast,medium,and slow trap states in DH:Si/C heterostructure are(4.2μs-7.7μs)/(1.5×10^13 cm^-2·eV^-1-3.2×10^13 cm^-2·eV^-1),(6.8μs-11.8μs)/(0.8×10^13 cm^-2·eV^-1-2.8×10^13 cm^-2·eV^-1),(30.1μs-151μs)/(7.5×10^12 cm^-2·eV^-1-7.8×10^12 cm^-2·eV^-1)at 300 K and(3.5μs-6.5μs)/(0.9×10^13 cm^-2·eV^-1-1.8×10^13 cm^-2·eV^-1),(4.9μs-9.4μs)/(0.6×10^13 cm^-2·eV^-1-1.7×10^13 cm^-2·eV^-1),(20.6μs-61.9μs)/(3.2×10^12 cm^-2·eV^-1-3.5×10^12 cm^-2·eV^-1)at 500 K,respectively.The DH:Si/C structure can effectively reduce the density of medium trap states compared with SH:C structure.展开更多
基金Supported by the KIST institutional program(2E26880,2E26276)
文摘X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.
文摘介绍了一种基于改进SLNC(sum of local normalized correlation,SLNC)的2D-3D医学图像配准方法。首先对CT体积数据进行三线性插值,得到各向分辨率相同的体积数据,采用光线跟踪算法对其进行数字图像重建。针对不同位置和方向的重建图像,在灰度级压缩的基础上,用改进SLNC函数评价其与X线透视图像的相似性,利用与Brent相结合的Powell优化方法,搜索出相似性最大时的投影变换参数。将此方法用于移动数字X线投影设备——Biplanar 500采集的X线透视图像与相应CT体积数据的配准实验,得到较好的2D-3D图像配准效果。
基金the National Key Research and Development Program of China(Grant No.2018YFB1802100)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2020JM-191 and 2018HJCG-20)+2 种基金the National Natural Science Foundation of China(Grant Nos.61904135,61704124,and 61534007)the China Postdoctoral Science Foundation(Grant Nos.2018M640957 and 2019M663930XB)the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation,China(Grant No.XWYCXY-012019007).
文摘The graded AlGaN:Si back barrier can form the majority of three-dimensional electron gases(3DEGs)at the GaN/graded AlGaN:Si heterostructure and create a composite two-dimensional(2D)-three-dimensional(3D)channel in AlGaN/GaN/graded-AlGaN:Si/GaN:C heterostructure(DH:Si/C).Frequency-dependent capacitances and conductance are measured to investigate the characteristics of the multi-temperature trap states of in DH:Si/C and AlGaN/GaN/GaN:C heterostructure(SH:C).There are fast,medium,and slow trap states in DH:Si/C,while only medium trap states exist in SH:C.The time constant/trap density for medium trap state in SH:C heterostructure are(11μs-17.7μs)/(1.1×10^13 cm^-2·eV^-1-3.9×10^13 cm^-2·eV^-1)and(8.7μs-14.1μs)/(0.7×10^13 cm^-2·eV^-1-1.9×10^13 cm^-2·eV^-1)at 300 K and 500 K respectively.The time constant/trap density for fast,medium,and slow trap states in DH:Si/C heterostructure are(4.2μs-7.7μs)/(1.5×10^13 cm^-2·eV^-1-3.2×10^13 cm^-2·eV^-1),(6.8μs-11.8μs)/(0.8×10^13 cm^-2·eV^-1-2.8×10^13 cm^-2·eV^-1),(30.1μs-151μs)/(7.5×10^12 cm^-2·eV^-1-7.8×10^12 cm^-2·eV^-1)at 300 K and(3.5μs-6.5μs)/(0.9×10^13 cm^-2·eV^-1-1.8×10^13 cm^-2·eV^-1),(4.9μs-9.4μs)/(0.6×10^13 cm^-2·eV^-1-1.7×10^13 cm^-2·eV^-1),(20.6μs-61.9μs)/(3.2×10^12 cm^-2·eV^-1-3.5×10^12 cm^-2·eV^-1)at 500 K,respectively.The DH:Si/C structure can effectively reduce the density of medium trap states compared with SH:C structure.