Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adop...Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.展开更多
The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeli...The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeling(FEM),and compared with analytical models for 10%,30%,50%,and 70%(in mass)uncoated/coated UN microspheres in a UO2 matrix.The FEM results show an increase in the fuel thermal conductivity as the mass fraction of the UN microspheres increases from 1.2 to 4.6 times the UO2 reference at 2,000 K.The results from analytical models agree with the thermal conductivity estimated by FEM.The results also show that Mo and W coatings have similar thermal behaviors,and the coating thickness influences the thermal conductivity of the composite.At higher weight fractions,the thermal conductivity of the fuel composite at room temperature is substantially influenced by the high thermal conductivity coatings approaching that of UN.Thereafter,the thermal conductivity from FEM was used in the fuel thermal performance evaluation during LWR normal operation to calculate the maximum centerline temperature.The results show a significant decrease in the fuel maximum centerline temperature ranging from−94 K for 10% UN to−414 K for 70%(in mass)UN compared to UO2 under the same operating conditions.展开更多
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d...In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.展开更多
This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the...This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, the so-called hand of textiles. Many objective and subjective techniques have already been developed for analysing the hand of textiles;however, none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the early stage of building the models;however, their utilitarian value was maintained. The models relate only to mechanical loading of the skin. They predict a low deformation of the fingertip skin under the pressure of virtual heterogeneous material: acrylic, coarse wool, and steel.展开更多
文摘Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.
基金This work was financially supported by the Swedish Science Council(Vetenskapsradet)under grant number 2019-04156by the Swedish Foundation for Strategic Research(SSF,Stiftelsen for Strategisk Forskning)under grant number ID17-0078,as well as in the SUNRISE center with financial support from SSF under Grant No.ARC19-0043.
文摘The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeling(FEM),and compared with analytical models for 10%,30%,50%,and 70%(in mass)uncoated/coated UN microspheres in a UO2 matrix.The FEM results show an increase in the fuel thermal conductivity as the mass fraction of the UN microspheres increases from 1.2 to 4.6 times the UO2 reference at 2,000 K.The results from analytical models agree with the thermal conductivity estimated by FEM.The results also show that Mo and W coatings have similar thermal behaviors,and the coating thickness influences the thermal conductivity of the composite.At higher weight fractions,the thermal conductivity of the fuel composite at room temperature is substantially influenced by the high thermal conductivity coatings approaching that of UN.Thereafter,the thermal conductivity from FEM was used in the fuel thermal performance evaluation during LWR normal operation to calculate the maximum centerline temperature.The results show a significant decrease in the fuel maximum centerline temperature ranging from−94 K for 10% UN to−414 K for 70%(in mass)UN compared to UO2 under the same operating conditions.
基金the National Natural Science Fund(11661058,11761053)Natural Science Fund of Inner Mongolia Autonomous Region(2016MS0102,2017MS0107)+1 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07)National Undergraduate Innovative Training Project of Inner Mongolia University(201710126026).
文摘In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.
文摘This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, the so-called hand of textiles. Many objective and subjective techniques have already been developed for analysing the hand of textiles;however, none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the early stage of building the models;however, their utilitarian value was maintained. The models relate only to mechanical loading of the skin. They predict a low deformation of the fingertip skin under the pressure of virtual heterogeneous material: acrylic, coarse wool, and steel.