In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construc...A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construct the resoluter, which is used to resolve overlapped peaks. Theoretical proof is given, and the selections of wavelets and parameters are discussed. It is proven that baseline separation can be achieved after processed, the relative errors of peak position and area are less than 0.2% and 4.0% respectively. It can be directly applied to seriously overlapped signals, noisy signals and multi-component signals, and the results are satisfactory. It is a novel effective method for resolution.展开更多
在高压直流(high voltage direct current,HVDC)输电系统中,受铁心饱和及交直流场各种滤波器影响,相比常规变压器,换流变压器空载合闸时差动保护更容易误动,由于换流变压器工作环境的特殊性,在发生不对称故障时,可能在差动电流中存在较...在高压直流(high voltage direct current,HVDC)输电系统中,受铁心饱和及交直流场各种滤波器影响,相比常规变压器,换流变压器空载合闸时差动保护更容易误动,由于换流变压器工作环境的特殊性,在发生不对称故障时,可能在差动电流中存在较大的2次谐波,从而导致差动保护误制动。对换流变空载合闸和区内故障进行仿真分析,验证了2次谐波制动在HVDC系统变压器差动保护中确实有较大的局限性,同时具有误动和拒动的可能。经分析,由于变压器的铁心进入饱和需要一定时间,励磁涌流引起的虚假差动电流突变量出现时刻要比相电压突变量的出现时刻滞后一个时间差。据此,提出基于相电压突变量和差动电流突变量出现时差的变压器差动保护判据,运用该判据对各种换流变压器区内故障和励磁涌流进行判别。通过EMTDC进行了大量的仿真试验,结果验证了该判据的可行性和有效性。展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.
基金This work was supported by the National Natural Science Foundation of China(Grant No.29975033)the Natural Science Foundation of Guangdong Province(Grant Nos.980340 and 001237).
文摘A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construct the resoluter, which is used to resolve overlapped peaks. Theoretical proof is given, and the selections of wavelets and parameters are discussed. It is proven that baseline separation can be achieved after processed, the relative errors of peak position and area are less than 0.2% and 4.0% respectively. It can be directly applied to seriously overlapped signals, noisy signals and multi-component signals, and the results are satisfactory. It is a novel effective method for resolution.
文摘在高压直流(high voltage direct current,HVDC)输电系统中,受铁心饱和及交直流场各种滤波器影响,相比常规变压器,换流变压器空载合闸时差动保护更容易误动,由于换流变压器工作环境的特殊性,在发生不对称故障时,可能在差动电流中存在较大的2次谐波,从而导致差动保护误制动。对换流变空载合闸和区内故障进行仿真分析,验证了2次谐波制动在HVDC系统变压器差动保护中确实有较大的局限性,同时具有误动和拒动的可能。经分析,由于变压器的铁心进入饱和需要一定时间,励磁涌流引起的虚假差动电流突变量出现时刻要比相电压突变量的出现时刻滞后一个时间差。据此,提出基于相电压突变量和差动电流突变量出现时差的变压器差动保护判据,运用该判据对各种换流变压器区内故障和励磁涌流进行判别。通过EMTDC进行了大量的仿真试验,结果验证了该判据的可行性和有效性。