The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O...The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.展开更多
Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Her...Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Here,zinc titanate(Zn_(2)TiO_(4))synthesised by the solid-state method was used as an additive to lower the initial temperature for dehydrogenation and enhance the re/dehydrogenation behaviour of MgH_(2).With the presence of Zn_(2)TiO_(4),the starting temperature for the dehydrogenation of MgH_(2)was remarkably lowered to around 290℃–305℃.In addition,within 300 s,the MgH_(2)–Zn_(2)TiO_(4)sample absorbed 5.0 wt.%of H_(2)and 2.2–3.6 wt.%H_(2)was liberated from the composite sample in 30 min,which is faster by 22–36 times than as-milled MgH_(2).The activation energy of the MgH_(2)for the dehydrogenation process was also downshifted to 105.5 k J/mol with the addition of Zn_(2)TiO_(4)indicating a decrease of 22%than as-milled MgH_(2).The superior behaviour of MgH_(2)was due to the formation of Mg Zn_(2),MgO and MgTiO_(3),which are responsible for ameliorating the re/dehydrogenation behaviour of MgH_(2).These findings provide a new understanding of the hydrogen storage behaviour of the catalysed-MgH_(2)system.展开更多
Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) a...Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) assisted strategy to prepare Co_(2)B-CoPO_x with massive boron vacancies by introducing phytic acid(PA) cross-linked Co complexes that are acquired from reaction of PA and ZIF-67 into cobalt boride. The PA etching effectively breaks down the structure of ZIF-67 to create more vacancies, favoring the maximal exposure of active sites and elevation of catalytic activity. Experimental results demonstrate a drastic electronic interaction between Co and the dopant phosphorous(P), thereby the robustly electronegative P induces electron redistribution around the metal species, which facilitates the dissociation of B-H bond and the adsorption of H_(2)O molecules. The vacancy-rich Co_(2)B-CoPO_x catalyst exhibits scalable performance, characterized by a high hydrogen generation rate(HGR) of 7716.7 m L min^(-1)g^(-1) and a low activation energy(Ea) of 44.9 k J/mol, rivaling state-of-the-art catalysts. This work provides valuable insights for the development of advanced catalysts through P doping and boron vacancy engineering and the design of efficient and sustainable energy conversion systems.展开更多
A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity an...A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity and good reversibility.However,the practical application of MgH_(2) is restricted by slow sorption kinetics and high stability of thermodynamic properties.Hydrogen storage performance of MgH_(2) was enhanced by introducing the Mg–Na–Al system that destabilises MgH_(2) with NaAlH_(4).The Mg–Na–Al system has superior performance compared to that of unary MgH_(2) and NaAlH_(4).To boost the performance of the Mg–Na–Al system,the ball milling method and the addition of a catalyst were introduced.The Mg–Na–Al system resulted in a low onset decomposition temperature,superior cyclability and enhanced kinetics performances.The Al_(12)Mg_(17) and NaMgH_(3) that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties.In this paper,the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed.The remaining challenges and future development of Mg–Na–Al system are also discussed.This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.展开更多
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(No.2022A1515011832 and 2021A1515110676)supported by GDAS’Project of Science and Technology Development(2022GDASZH-2022010104,2022GDASZH-2022030604-04).
文摘The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.
基金Universiti Malaysia Terengganu(UMT)for the funding provided by Golden Goose Research Grant(GGRG)VOT 55190。
文摘Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Here,zinc titanate(Zn_(2)TiO_(4))synthesised by the solid-state method was used as an additive to lower the initial temperature for dehydrogenation and enhance the re/dehydrogenation behaviour of MgH_(2).With the presence of Zn_(2)TiO_(4),the starting temperature for the dehydrogenation of MgH_(2)was remarkably lowered to around 290℃–305℃.In addition,within 300 s,the MgH_(2)–Zn_(2)TiO_(4)sample absorbed 5.0 wt.%of H_(2)and 2.2–3.6 wt.%H_(2)was liberated from the composite sample in 30 min,which is faster by 22–36 times than as-milled MgH_(2).The activation energy of the MgH_(2)for the dehydrogenation process was also downshifted to 105.5 k J/mol with the addition of Zn_(2)TiO_(4)indicating a decrease of 22%than as-milled MgH_(2).The superior behaviour of MgH_(2)was due to the formation of Mg Zn_(2),MgO and MgTiO_(3),which are responsible for ameliorating the re/dehydrogenation behaviour of MgH_(2).These findings provide a new understanding of the hydrogen storage behaviour of the catalysed-MgH_(2)system.
基金supported by the National Natural Science Foundation of China (No.21965005)Natural Science Foundation of Guangxi Province (No.2021GXNSFAA076001)+1 种基金Guangxi Technology Base and Talent Subject (Nos.GUIKE AD18126001, GUIKE AD20297039)Innovation Project of Guangxi Graduate Education (Nos.YCSW2023140, YCBZ2023062)。
文摘Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) assisted strategy to prepare Co_(2)B-CoPO_x with massive boron vacancies by introducing phytic acid(PA) cross-linked Co complexes that are acquired from reaction of PA and ZIF-67 into cobalt boride. The PA etching effectively breaks down the structure of ZIF-67 to create more vacancies, favoring the maximal exposure of active sites and elevation of catalytic activity. Experimental results demonstrate a drastic electronic interaction between Co and the dopant phosphorous(P), thereby the robustly electronegative P induces electron redistribution around the metal species, which facilitates the dissociation of B-H bond and the adsorption of H_(2)O molecules. The vacancy-rich Co_(2)B-CoPO_x catalyst exhibits scalable performance, characterized by a high hydrogen generation rate(HGR) of 7716.7 m L min^(-1)g^(-1) and a low activation energy(Ea) of 44.9 k J/mol, rivaling state-of-the-art catalysts. This work provides valuable insights for the development of advanced catalysts through P doping and boron vacancy engineering and the design of efficient and sustainable energy conversion systems.
基金This work was supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(FRGS/1/2019/STG07/UMT/02/5)The authors also thank the Universiti Malaysia Terengganu for providing the facilities to carry out this project.Scheme(FRGS/1/2019/STG07/UMT/02/5)The authors also thank the Universiti Malaysia Terengganu for providing the facilities to carry out this project.
文摘A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity and good reversibility.However,the practical application of MgH_(2) is restricted by slow sorption kinetics and high stability of thermodynamic properties.Hydrogen storage performance of MgH_(2) was enhanced by introducing the Mg–Na–Al system that destabilises MgH_(2) with NaAlH_(4).The Mg–Na–Al system has superior performance compared to that of unary MgH_(2) and NaAlH_(4).To boost the performance of the Mg–Na–Al system,the ball milling method and the addition of a catalyst were introduced.The Mg–Na–Al system resulted in a low onset decomposition temperature,superior cyclability and enhanced kinetics performances.The Al_(12)Mg_(17) and NaMgH_(3) that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties.In this paper,the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed.The remaining challenges and future development of Mg–Na–Al system are also discussed.This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.