This paper presents a novel four degrees of freedom(DOF) parallel mechanism with the closed-loop limbs, which includes two translational(2 T) DOF and two rotational(2 R) DOF. By connecting the proposed parallel mechan...This paper presents a novel four degrees of freedom(DOF) parallel mechanism with the closed-loop limbs, which includes two translational(2 T) DOF and two rotational(2 R) DOF. By connecting the proposed parallel mechanism with the guide rail in series,the 5-DOF hybrid robot system is obtained, which can be applied for the composite material tape laying in aerospace industry. The analysis in this paper mainly focuses on the parallel module of the hybrid robot system. First, the freedom of the proposed parallel mechanism is calculated based on the screw theory. Then, according to the closed-loop vector equation, the inverse kinematics and Jacobian matrix of the parallel mechanism are carried out. Next, the workspace stiffness and dexterity analysis of the parallel mechanism are investigated based on the constraint equations, static stiffness matrix and Jacobian condition number. Finally, the correctness of the inverse kinematics and the high stiffness of the parallel mechanism are verified by the kinematics and stiffness simulation analysis, which lays a foundation for the automatic composite material tape laying.展开更多
基金by Fundamental Research Funds for the Central Universities(No.2018JBZ007).
文摘This paper presents a novel four degrees of freedom(DOF) parallel mechanism with the closed-loop limbs, which includes two translational(2 T) DOF and two rotational(2 R) DOF. By connecting the proposed parallel mechanism with the guide rail in series,the 5-DOF hybrid robot system is obtained, which can be applied for the composite material tape laying in aerospace industry. The analysis in this paper mainly focuses on the parallel module of the hybrid robot system. First, the freedom of the proposed parallel mechanism is calculated based on the screw theory. Then, according to the closed-loop vector equation, the inverse kinematics and Jacobian matrix of the parallel mechanism are carried out. Next, the workspace stiffness and dexterity analysis of the parallel mechanism are investigated based on the constraint equations, static stiffness matrix and Jacobian condition number. Finally, the correctness of the inverse kinematics and the high stiffness of the parallel mechanism are verified by the kinematics and stiffness simulation analysis, which lays a foundation for the automatic composite material tape laying.