The gas_well system permanently installed in the soil was adopted for studying the dynamic relationship between CO 2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Che...The gas_well system permanently installed in the soil was adopted for studying the dynamic relationship between CO 2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open_top chambers (OTCs): ambient CO 2+no_seedling, 700 μmol/mol CO 2+no_seedling, ambient CO 2 +seedlings, 700 μmol/mol CO 2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO 2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO 2 profiles due to respiration root. Compared with the ambient CO 2, elevated CO 2 led to the peak of CO 2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas_well system is an inexpensive, non_destructive and relatively sensitive method for study of soil CO 2 concentration profiles.展开更多
文摘The gas_well system permanently installed in the soil was adopted for studying the dynamic relationship between CO 2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open_top chambers (OTCs): ambient CO 2+no_seedling, 700 μmol/mol CO 2+no_seedling, ambient CO 2 +seedlings, 700 μmol/mol CO 2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO 2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO 2 profiles due to respiration root. Compared with the ambient CO 2, elevated CO 2 led to the peak of CO 2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas_well system is an inexpensive, non_destructive and relatively sensitive method for study of soil CO 2 concentration profiles.