期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
Effects of surface chlorine atoms on charge distribution and reaction barriers for photocatalytic CO_(2)reduction
1
作者 Wendong Zhang Wenjun Ma +6 位作者 Yuerui Ma Peng Chen Qingqing Ye Yi Wang Zhongwei Jiang Yingqing Ou Fan Dong 《Nano Materials Science》 EI CAS CSCD 2024年第2期235-243,共9页
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st... Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst. 展开更多
关键词 Surface chlorine atoms Charge distribution reaction barriers Photocatalytic CO_(2)reduction Bi_(2)WO_(6)
下载PDF
Healing the structural defects of spinel MnFe_(2)O_(4) to enhance the electrocatalytic activity for oxygen reduction reaction
2
作者 Manting Tang Yue Zou +5 位作者 Zhiyong Jiang Peiyu Ma Zhiyou Zhou Xiaodi Zhu Jun Bao Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期12-19,I0001,共9页
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o... Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale. 展开更多
关键词 Spinel MnFe_(2)O_(4) Oxygen reduction reaction Spinel inverse Oxygen vacancies Eutectic molten salt
下载PDF
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
3
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
“Blocking and rebalance”mechanism-guided design strategies of bimetallic doped 2D a-phosphorus carbide as efficient catalysts for N_(2) electroreduction
4
作者 Cheng He Jianglong Ma +1 位作者 Shen Xi Wenxue Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期68-78,I0003,共12页
Compared to single atom catalysts(SACs),the introduction of dual atom catalysts(DACs)has a significantly positive effect on improving the efficiency in the electrocatalytic nitrogen reduction reaction(NRR)which provid... Compared to single atom catalysts(SACs),the introduction of dual atom catalysts(DACs)has a significantly positive effect on improving the efficiency in the electrocatalytic nitrogen reduction reaction(NRR)which provides an environmental alternative to the Haber-Bosch process.However,the research on the mechanism and strategy of designing bimetallic combinations for better performance is still in its early stages.Herein,based on"blocking and rebalance"mechanism,45 combinations of bimetallic pair dopedα-phosphorus carbide(TM_(A)TM_(B)@PC)are investigated as efficient NRR catalysts through density functional theory and machine learning method.After a multi-step screening,the combinations of TiV,TiFe,MnMo,and FeW exhibit highly efficient catalytic performance with significantly lower limiting potentials(-0.17,-0.18,-0.14,and-0.30 V,respectively).Excitingly,the limiting potential for CrMo and CrW combinations is 0 V,which are considered to be extremely suitable for the NRR process.The mechanism of"blocking and rebalance"is revealed by the exploration of charge transfer for phosphorus atoms in electron blocking areas.Moreover,the descriptorφis proposed with machine learning,which provides design strategies and accurate prediction for finding efficient DACs.This work not only offers promising catalysts TM_(A)TM_(B)@PC for NRR process but also provides design strategies by presenting the descriptorφ. 展开更多
关键词 DACs Nitrogen reduction reaction 2D a-phosphorus carbide Inherent attributes Machine learning
下载PDF
Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO_(2)to C_(2):Synergistic catalysis or tandem catalysis?
5
作者 Yan Luo Jun Yang +6 位作者 Jundi Qin Kanghua Miao Dong Xiang Aidar Kuchkaev Dmitry Yakhvarov Chuansheng Hu Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期499-507,共9页
The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and deba... The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism. 展开更多
关键词 CO_(2)reduction reaction Raman spectroscopy Synergistic catalysis DFT calculation
下载PDF
MOF‐derived 1D/3D N‐doped porous carbon for spatially confined electrochemical CO_(2) reduction to adjustable syngas
6
作者 Wei Zhang Hui Li +5 位作者 Daming Feng Chenglin Wu Chenghua Sun Baohua Jia Xue Liu Tianyi Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期1-13,共13页
Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dime... Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application. 展开更多
关键词 electrochemical CO_(2)reduction reaction melamine sponge metal‐organic frameworks porous carbon SYNGAS
下载PDF
Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO_(2) reduction
7
作者 Jialin Wang Kaini Zhang +5 位作者 Ta Thi Thuy Ng Yiqing Wang Yuchuan Shi Daixing Wei Chung-Li Dong Shaohua Shen 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期54-65,共12页
The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into... The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction. 展开更多
关键词 Electrochemical CO_(2) reduction reaction Chalcogen heteroatoms Single-atom catalysts Asymmetric coordination CO production
下载PDF
Atomic Dispersed Hetero‑Pairs for Enhanced Electrocatalytic CO_(2)Reduction
8
作者 Zhaoyong Jin Meiqi Yang +13 位作者 Yilong Dong Xingcheng Ma Ying Wang Jiandong Wu Jinchang Fan Dewen Wang Rongshen Xi Xiao Zhao Tianyi Xu Jingxiang Zhao Lei Zhang David J.Singh Weitao Zheng Xiaoqiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期55-67,共13页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale. 展开更多
关键词 CO_(2)reduction reaction Atomic dispersed catalyst Hetero-diatomic pair Ad-desorption energy Linear scaling relation
下载PDF
Data-Driven Design of Single-Atom Electrocatalysts with Intrinsic Descriptors for Carbon Dioxide Reduction Reaction
9
作者 Xiaoyun Lin Shiyu Zhen +4 位作者 Xiaohui Wang Lyudmila V.Moskaleva Peng Zhang Zhi-Jian Zhao Jinlong Gong 《Transactions of Tianjin University》 EI CAS 2024年第5期459-469,共11页
The strategic manipulation of the interaction between a central metal atom and its coordinating environment in single-atom catalysts(SACs)is crucial for catalyzing the CO_(2)reduction reaction(CO_(2)RR).However,it rem... The strategic manipulation of the interaction between a central metal atom and its coordinating environment in single-atom catalysts(SACs)is crucial for catalyzing the CO_(2)reduction reaction(CO_(2)RR).However,it remains a major challenge.While density-functional theory calculations serve as a powerful tool for catalyst screening,their time-consuming nature poses limitations.This paper presents a machine learning(ML)model based on easily accessible intrinsic descriptors to enable rapid,cost-effective,and high-throughput screening of efficient SACs in complex systems.Our ML model comprehensively captures the influences of interactions between 3 and 5d metal centers and 8 C,N-based coordination environments on CO_(2)RR activity and selectivity.We reveal the electronic origin of the different activity trends observed in early and late transition metals during coordination with N atoms.The extreme gradient boosting regression model shows optimal performance in predicting binding energy and limiting potential for both HCOOH and CO production.We confirm that the product of the electronegativity and the valence electron number of metals,the radius of metals,and the average electronegativity of neighboring coordination atoms are the critical intrinsic factors determining CO_(2)RR activity.Our developed ML models successfully predict several high-performance SACs beyond the existing database,demonstrating their potential applicability to other systems.This work provides insights into the low-cost and rational design of high-performance SACs. 展开更多
关键词 Density functional theory Machine learning CO_(2) reduction reaction ELECTROCATALYSTS High-throughput screening
下载PDF
Nitrogen-doping boosts ^(*)CO utilization and H_(2)O activation on copper for improving CO_(2) reduction to C_(2+) products
10
作者 Yisen Yang Zhonghao Tan +5 位作者 Jianling Zhang Jie Yang Renjie Zhang Sha Wang Yi Song Zhuizhui Su 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1459-1465,共7页
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef... To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved. 展开更多
关键词 Electrocatalytic CO_(2)reduction reaction Copper catalyst DOPING Multi-carbon products In situ Raman measurement
下载PDF
Engineering asymmetric electronic structure of cobalt coordination on CoN_(3)S active sites for high performance oxygen reduction reaction
11
作者 Long Chen Shuhu Yin +9 位作者 Hongbin Zeng Jia Liu Xiaofeng Xiao Xiaoyang Cheng Huan Huang Rui Huang Jian Yang Wen-Feng Lin Yan-Xia Jiang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期494-502,共9页
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform... The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance. 展开更多
关键词 Fuel cells Oxygen reduction reaction Coordination symmetry CoN_(3)S H_(2)O_(2)selectivity
下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells
12
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
下载PDF
Single-atom catalysts based on polarization switching of ferroelectric In_(2)Se_(3) for N_(2) reduction
13
作者 Nan Mu Tingting Bo +3 位作者 Yugao Hu Ruixin Xu Yanyu Liu Wei Zhou 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期244-257,共14页
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a... The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes. 展开更多
关键词 In_(2)Se_(3) monolayer Density functional theory Ferroelectric switching Single atom catalysts Nitrogen reduction reaction Machine learning
下载PDF
Activation of Transition Metal(Fe,Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO_(2) Reduction Reaction 被引量:1
14
作者 Yi Cheng Jinfan Chen +7 位作者 Chujie Yang Huiping Wang Bernt Johannessen Lars Thomsen Martin Saunders Jianping Xiao Shize Yang San Ping Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u... The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions. 展开更多
关键词 activation effect electrochemical CO_(2)reduction reaction N defect proton-coupled electron transfer process transition metal oxide nanocluster
下载PDF
Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO_(2)Reduction 被引量:6
15
作者 Chengbo Li Yuan Ji +8 位作者 Youpeng Wang Chunxiao Liu Zhaoyang Chen Jialin Tang Yawei Hong Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期72-115,共44页
Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropo... Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropogenic carbon cycle.Among various electrocatalysts for electrochemical CO_(2)reduction,multifunctional metal–organic frameworks(MOFs)have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures.Up to now,great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR),and their corresponding reaction mechanisms have been thoroughly studied.In this review,we summarize the recent progress of applying MOFs and their derivatives in CO_(2)RR,with a focus on the design strategies for electrocatalysts and electrolyzers.We first discussed the reaction mechanisms for different CO_(2)RR products and introduced the commonly applied electrolyzer configurations in the current CO_(2)RR system.Then,an overview of several categories of products(CO,HCOOH,CH_(4),CH_(3)OH,and multi-carbon chemicals)generated from MOFs or their derivatives via CO_(2)RR was discussed.Finally,we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO_(2)reduction.We aim to provide new insights into this field and further guide future research for large-scale applications. 展开更多
关键词 Metal-organic frameworks DERIVATIVES CATALYST CO_(2)reduction reaction ELECTROCATALYSIS
下载PDF
Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO_(2) to C_(2+) products 被引量:5
16
作者 Zi-Yang Zhang Hao Tian +3 位作者 Lei Bian Shi-Ze Liu Yuan Liu Zhong-Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期90-97,I0004,共9页
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c... The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR. 展开更多
关键词 Electrochemical CO_(2)reduction reaction C_(2+)products Cu-Zn alloy Cu-Zn aluminate oxide Interface
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:2
17
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet Hydrogen/oxygen evolution reaction Oxygen reduction reaction WATER-SPLITTING
下载PDF
Accelerated prediction of Cu-based single-atom alloy catalysts for CO_(2) reduction by machine learning 被引量:2
18
作者 Dashuai Wang Runfeng Cao +5 位作者 Shaogang Hao Chen Liang Guangyong Chen Pengfei Chen Yang Li Xiaolong Zou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期820-830,共11页
Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amo... Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amount of data.However,a unified understanding of underlying mechanism for further optimization is still lacking.In this work,combining first-principles calculations and machine learning(ML)techniques,we elucidate critical factors influencing the catalytic properties,taking Cu-based single atom alloys(SAAs)as examples.Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces.Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance.Applying our ML model with cross-group learning scheme,we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements.Further,electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO.Finally,several SAAs,including PCu,AgCu,GaCu,ZnCu,SnCu,GeCu,InCu,and SiCu,are identified as promising CO_(2)RR catalysts.Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions. 展开更多
关键词 Cu-based single-atom alloy CO adsorption Machine learning First principles CO_(2)reduction reaction
下载PDF
Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N_(2) electroreduction activity 被引量:2
19
作者 Xiaoxue Zhang Yuehan Cao +8 位作者 Zhen-Feng Huang Shishi Zhang Chengguang Liu Lun Pan Chengxiang Shi Xiangwen Zhang Ying Zhou Guidong Yang Ji-Jun Zou 《Carbon Energy》 SCIE CSCD 2023年第2期193-200,共8页
The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,wh... The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites. 展开更多
关键词 catalyst design electrochemical N_(2)reduction interfacial charge transfer reaction mechanism symmetry-breaking sites
下载PDF
Ultralow Ag-assisted carbon-carbon coupling mechanism on Cu-based catalysts for electrocatalytic CO_(2) reduction 被引量:1
20
作者 Lei Xue Qi-Yuan Fan +5 位作者 Yuansong Zhao Yang Liu Heng Zhang Min Sun Yan Wang Shanghong Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期414-422,I0009,共10页
Electrocatalytic CO_(2) reduction to C2H4supplies an economically viable route for CO_(2) fixation with the integration of intermittent renewable energy.Cu-based catalysts are capable of catalyzing CO_(2) to C_(2)H_(4... Electrocatalytic CO_(2) reduction to C2H4supplies an economically viable route for CO_(2) fixation with the integration of intermittent renewable energy.Cu-based catalysts are capable of catalyzing CO_(2) to C_(2)H_(4),while suffering from the high overpotential and low Faradaic efficiency.In this joint experimentalcomputational work,an Ag-assisted carbon-carbon coupling is exploited on Cu-based catalysts.A systematic characterization analysis suggests that an ultralow quantity of Ag atoms in the Cu catalysts motivates electron transfer from Cu to Ag,regulating the electronic state of highly dispersed Ag.Meanwhile,the Ag incorporation provokes the formation of more oxygen defects on the catalyst surface,improving the adsorption and activation of CO_(2) molecules.Density functional theory studies prove the improvement effect of Ag for CO_(2)to COOH^(*).^(*)CO hydrogenation is energetically more favorable than^(*)CO dimerization pathway,and two^(*)CHO dimerization produces^(*)OCHCHO^(*) key intermediates,which greatly reduces the energy barrier for C_(2)H_(4) formation. 展开更多
关键词 Silver-copper Ethylene Density functional theory reaction mechanism CO_(2)reduction
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部