We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus ...We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.展开更多
In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some ...In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown.展开更多
We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second...We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.展开更多
In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomi...In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established. Certain summation formulae for these polynomials are also derived. Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.展开更多
The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polyn...The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological in...Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological index is . In this paper, the Schultz, Modified Schultz polynomials and their topological indices of Jahangir graphs J<sub>2,m</sub> for all integer number m ≥ 3 are calculated.展开更多
Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of gener...Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
基金Supported by the National Science Foundation of China(11471151) Supported by Program for Liaoning Excellent Talents in University(LR2011031)
Acknowledgment The authors would like to thank the referees for kind suggestions and many useful comments
文摘We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.
基金This work was supported by the Taif University Researchers Supporting Project(TURSP-2020/246)“Taif University,Taif,Saudi Arabia”.
文摘In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(No.2020R1F1A1A01071564).
文摘We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.
基金UGC-BSR Reaserch Start-Up-Grant (Office Memo No. 30-90/2015(BSR)) awarded to the author by the University Grants Commission (UGC), Government of India, New Delhi
文摘In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established. Certain summation formulae for these polynomials are also derived. Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.
文摘The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.
文摘Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological index is . In this paper, the Schultz, Modified Schultz polynomials and their topological indices of Jahangir graphs J<sub>2,m</sub> for all integer number m ≥ 3 are calculated.
文摘Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.