The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectiv...The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectively, was used to simulate the migration of the contaminants NH4 and NO3 in a soil and groundwater system, including unsaturated and saturated zones. The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water. The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time. A short infiltration time resulted in a single sharp peak in the breakthrough curve, while a long infiltration time led to a plateau curve. When NH4 and NO3 migrated from the unsaturated zone to the saturated zone, an interracial retardation was formed, resulting in an increased contaminant concentration on the interface. Under the influence of horizontal groundwater movement, the infiltrated contaminants formed a contamination-prone area downstream. As the contaminants migrated downstream, their concentrations were significantly reduced. Under the same infiltration concentration, the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank, suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.展开更多
Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident ...Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies.展开更多
Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and ...Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.展开更多
In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,howeve...In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.展开更多
基金the National Key Basic Research Program (973 Program) of China (No.2002CB412303)the National Natural Science Foundation of China (No.50709009)the Key Project of Chinese Ministry of Education (No.106088).
文摘The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectively, was used to simulate the migration of the contaminants NH4 and NO3 in a soil and groundwater system, including unsaturated and saturated zones. The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water. The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time. A short infiltration time resulted in a single sharp peak in the breakthrough curve, while a long infiltration time led to a plateau curve. When NH4 and NO3 migrated from the unsaturated zone to the saturated zone, an interracial retardation was formed, resulting in an increased contaminant concentration on the interface. Under the influence of horizontal groundwater movement, the infiltrated contaminants formed a contamination-prone area downstream. As the contaminants migrated downstream, their concentrations were significantly reduced. Under the same infiltration concentration, the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank, suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.
文摘Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies.
基金Sponsored by the National Natural Science Foundation of China under Grant( 50335040).
文摘Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.
基金National Natural Science Foundation of China(project number:41661091)Lanzhou Jiaotong University Excellent Platform Support Project(201806)。
文摘In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.