The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band...The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band of PbWO 4 crystal. The luminescent intensity of the green and the blue band of PbWO 4 emission increases by doping with about 0 005% and 0 01% (molar fraction) Gd 3+ respectively. Mechanism of this enhancement of PbWO 4∶Gd 3+ luminescence is probably due to energy transfer from Gd 3+ to PbWO 4 host in the crystal. The PbWO 4 doped with low concentration of Gd (about 0 005%~0 01%) is a good scintillating material.展开更多
In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was ev...In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.展开更多
To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ andTb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 underreducing atmosphere at 1250i ....To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ andTb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 underreducing atmosphere at 1250i . It is notable that the brightness of the sample with appropriatecomposition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a newhigh efficency green luminescent material was obtained with appropriate B2O3-content.展开更多
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be...The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.展开更多
Barium titanate tin oxides BaTi<sub>0.9</sub>Sn<sub>0.1</sub>O<sub>3</sub> referred to as (BTSO) doped with 0.5Er<sup>3+</sup> and co-doped with (0.75 and 1) Yb<sup&g...Barium titanate tin oxides BaTi<sub>0.9</sub>Sn<sub>0.1</sub>O<sub>3</sub> referred to as (BTSO) doped with 0.5Er<sup>3+</sup> and co-doped with (0.75 and 1) Yb<sup>3+</sup> ions, were prepared using a modified sol-gel method and calcinated at 1050<span style="white-space:nowrap;">?</span>C in the air for 4 h. The influence of the selected rare earth element on the structure morphology, dielectric properties behavior was investigated. From TEM micrographs, it has appeared that the particles have a spherical shape with a small size in nanoscale. The average particle size is determined both by TEM and XRD diffraction was found to be in agreement and within the range between 45.9 and 57.7 nm. The effects of Lanthanide incorporation on the evolution of these nano-crystalline structures were followed by XRD and (FTIR). The XRD patterns give rise to a single perovskite phase, while the tetragonality was found to decrease gradually with Er<sup>3+</sup> and Er<sup>3+</sup>/Yb<sup>3+</sup> ions, respectively. FTIR results showed enhancement of the crystallinity and the absence of carbonates upon increasing Yb<sup>3+</sup> ions concentration from 0.75 up to 1 mol%. The dielectric and conductivity properties were found to be enhanced by the nature and the concentration of the lanthanide element (Er<sup>3+</sup>, Yb<sup>3+</sup>) in the BTSO host lattice. The Curie temperature (T<sub>c</sub>) shifted to a lower value from 117 for BTSO: 0.5Er to 93 for BTSO: 0.5Er/1Yb and the permittivity <em>ε’</em> increased from 3972 to 6071, so BTSO: 0.5Er/1Yb good crystalline material candidate for capacitors application due to its higher permittivity.展开更多
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, th...Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.展开更多
The effect of Nd^(3+) on the photosynthesis and the growth of spinach was studied. The results show that Nd^(3+) improves the growth of spinach and increases chlorophyll content and photosynthetic rate. UV-Vis spectru...The effect of Nd^(3+) on the photosynthesis and the growth of spinach was studied. The results show that Nd^(3+) improves the growth of spinach and increases chlorophyll content and photosynthetic rate. UV-Vis spectrum indicates that the Soret band of chl-a in spinach with NdCl_3 treatment is blue shifted by 2 nm, and the Q band is red shifted by 1 nm, and the ratio of Soret band intensity and Q band intensity increases. FT-IR spectra show that the peak of porphyrin ring in chl-a of spinach with NdCl_3 treatment is widened, suggesting that the formation of Nd^(3+)-chl-a. Treated by NdCl_3, the fluorescence emission peak of PSⅡ in spinach leaves is blue shifted by 12 nm and the intensity declines obviously, indicating that Nd^(3+) is bound to the PSⅡ protein-pigment complex and the electron transfer rate increases.展开更多
The effects of Ce^3 + on the chloroplast senescence of spinach under light were studied. The results show that when the chloroplasts are illuminated for 1, 5 and 10 min with 500 μmol·cm^-2· min^-1 light in...The effects of Ce^3 + on the chloroplast senescence of spinach under light were studied. The results show that when the chloroplasts are illuminated for 1, 5 and 10 min with 500 μmol·cm^-2· min^-1 light intensity, the oxygen evolution rate is rapidly increased. When the chloroplasts are treated for 20, 30 and 40 min with 500 μmol·cm^-2·min^-1 light intensity, the oxygen evolution rate is gradually decreased. While spinach is treated with 16μmol·L^-1 Ce^3+ , the rate of oxygen evolution of chloroplasts in different illumination time (1,5, 10, 20, 30, 40 min) is higher than that of control, and when illumination time is over 10 min, the reduction of the oxygen evolution rate is lower than that of control. It suggests that Ce^3+ treatment can protect chloroplasts from aging for long time illumination. The mechanism research results indicate that Ce^3+ treatment can significantly decrease accumulation of active oxygen free radicals such as O2^- and H2O2, and reduce the level of malondialdehyde (MDA), and maintain stability of membrane structure of chloroplast under light. It is shown that the redox took place between cerium and free radicals, which are eliminated in a large number, leading to protect the membrane fiom peroxidating.展开更多
Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were...Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.展开更多
Eu 3+ ions were incorporated in sol and gel by a sol gel processing using 3 glycidoxypropyltrimethoxysilane (CH 2OCHCH 2O(CH 2) 3Si(OCH 3) 3, GPTMS) and ethyl silicate (TEOS) as precursors. The basic chem...Eu 3+ ions were incorporated in sol and gel by a sol gel processing using 3 glycidoxypropyltrimethoxysilane (CH 2OCHCH 2O(CH 2) 3Si(OCH 3) 3, GPTMS) and ethyl silicate (TEOS) as precursors. The basic chemical physical properties such as DTA curve, FT IR spectra and specific surface area were recorded. The characteristics of their optical spectra were measured and investigated. The results indicate that the emission intensity of Eu 3+ ion in ormocer is much higher and the global line width is wider than those in SiO 2 gel. The relationship between the composition and structure of gels and the fluorescence intensity and width were discussed. The obtained ormocer shows good mechanical strength, which can be cut and polished in machine without broken.展开更多
Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540...Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.展开更多
Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, ...Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er^(3+) were calculated by Judd-Ofelt theory, and stimulated emission cross-section of (()~4I_(13/2))→(()~4I_(15/2)) transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er^(3+)-doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er^(3+)-doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.展开更多
The three host glasses doped with Yb 3+ were prepared by means of conventional melt quenching technology, and the influence on physical and spectral properties of phosphate glass due to addition of B2O3 was investigat...The three host glasses doped with Yb 3+ were prepared by means of conventional melt quenching technology, and the influence on physical and spectral properties of phosphate glass due to addition of B2O3 was investigated and compared with silicate glass. The results show that due to the existence of OH- impurities which induce the non-radiative route, the fluorescence lifetime of phosphate glass is shorter, so silicate glass has better spectral properties than phosphate glass. Silicate glass has more excellent thermal-mechanical properties than phosphate glass, but with the addition of B2O3, thermal-mechanical properties of phosphate glass are improved greatly without fluorescence quenching effect, and this kind of borophosphate glass will be the candidate to be used in high average power solid state laser.展开更多
The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emiss...The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emission spectra of the above Cr^3+-incorporated solid-state materials were recorded. The technical parameters for growing high-quality Cr^3+:BeAl2O4 and Cr^3+:LINbO3 crystals were obtained. The results indicate that the optical absorption and fluorescence spectra of Cr^3+ show quite a few differences in various matrixes. The sharp line emissions were observed in the Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 crystals. The crystal-field parameters (Dq) for Cr^3+. in different matrixes were calculated from their corresponding spectra. It is indicated that Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 belong to the high-field site crystal, while the Cr^3+ ZnO-Al2O3-SiO2 glass and glass-ceramic belong to the weak-field site crystal.展开更多
Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory,...Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses展开更多
In the preparation of this precursor tetraethlortho silicate (TEOS), sodium tungstate, ethyl alcohol, HCl and RECl3(RE=Eu,Tb) were mixed and then heated at 800 ℃ for 2 h, leading to a luminescent compound. The struct...In the preparation of this precursor tetraethlortho silicate (TEOS), sodium tungstate, ethyl alcohol, HCl and RECl3(RE=Eu,Tb) were mixed and then heated at 800 ℃ for 2 h, leading to a luminescent compound. The structure of the materials was characterized by TG-DTA and IR analysis, and the results indicate that the materials were in SiO2 network structure. Three-dimensional fluorescence spectra was used to characterize the luminescent properties of the materials. The luminescence property of doped and un-doped Eu3+or Tb3+ and Na2WO4 in silica materials were prepared and measured. The results show that good energy transfer from WO2-4 to Eu3+ ion, sensitized the luminescence intensity of Eu3+ remarkably. Tb3+ ion incorporated silica materials expressed the inverse energy transition from Tb3+ to WO2-4, however, we got the materials with homogeneous green blue fluorescent light. Finally, the energy transfer of WO2-4 and Eu3+, WO2-4 and Tb3+ were explained by energy levels diagram.展开更多
Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when th...Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO_2 is 0~50%(molar fraction), Gd_2O_3 is 0~30%(molar fraction) and B_2O_3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO_2 and 30% Gd_2O_3 , or at the contents of 60%(molar fraction) SiO_2 and 30%(molar fraction) B_2O_3. There is no glass phase formed in other glass components. Glass forming ability for Gd_2O_3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt_((2,4,6)) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σ_e^(peak) product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er^(3+)-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.展开更多
During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different ...During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different concentration of Fe^3+ dopant by traditional temperaturereduction method and "point-seed" rapid growth method. Furthermore, we examined the light scatter and measured the transmission of these KDP crystals. It is found that the dopant of Fe^3+ ion can improve the stability of the KDP growth solution when its concentration is less than 30 ppm. The effects of Fe^3+ ion on the growth habit and optical properties of KDP crystal are also obvious.展开更多
The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized b...The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized by Czochralski method in air atmosphere. X-ray diffraction shows that the obtained crystal is a single phase of LiNbO3 and the rare-earth ions occupied the Li^+ or Nb^5+ sites instead of the interstitial sites. Under 980 nm excitation, green and red emission bands due to the Ho^3+ (^5S2, ^5F4)/^5I8 and Ho^3+ ^5F5/^5I8 energy transitions are observed in these samples, respectively. Power dependence studies on these samples with different Yb^3+ dopant concentrations indicate that the red and green emissions are based on a two-photon process. The intensities of the red and green upconversion fluorescence increase with Yb3+ ions of 0-2.0 mol% because of an increased Yb^3+ sensitization, but decrease at higher concentrations owing to the back-energy transfer between the Yb^3+ and Ho^3+ ions.展开更多
The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The result...The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The results show that, due to the existence of OH^-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass. Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect. This kind of borophosphate glass can be used in high average power solid state lasers.展开更多
文摘The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band of PbWO 4 crystal. The luminescent intensity of the green and the blue band of PbWO 4 emission increases by doping with about 0 005% and 0 01% (molar fraction) Gd 3+ respectively. Mechanism of this enhancement of PbWO 4∶Gd 3+ luminescence is probably due to energy transfer from Gd 3+ to PbWO 4 host in the crystal. The PbWO 4 doped with low concentration of Gd (about 0 005%~0 01%) is a good scintillating material.
基金Project supported by Beijing Excellent Talents Training Fund (20061D0502200299)
文摘In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.
文摘To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ andTb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 underreducing atmosphere at 1250i . It is notable that the brightness of the sample with appropriatecomposition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a newhigh efficency green luminescent material was obtained with appropriate B2O3-content.
基金Project supported by the Foundation of Education Department of Shaanxi Province,China(Grant No.16JK1402)
文摘The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.
文摘Barium titanate tin oxides BaTi<sub>0.9</sub>Sn<sub>0.1</sub>O<sub>3</sub> referred to as (BTSO) doped with 0.5Er<sup>3+</sup> and co-doped with (0.75 and 1) Yb<sup>3+</sup> ions, were prepared using a modified sol-gel method and calcinated at 1050<span style="white-space:nowrap;">?</span>C in the air for 4 h. The influence of the selected rare earth element on the structure morphology, dielectric properties behavior was investigated. From TEM micrographs, it has appeared that the particles have a spherical shape with a small size in nanoscale. The average particle size is determined both by TEM and XRD diffraction was found to be in agreement and within the range between 45.9 and 57.7 nm. The effects of Lanthanide incorporation on the evolution of these nano-crystalline structures were followed by XRD and (FTIR). The XRD patterns give rise to a single perovskite phase, while the tetragonality was found to decrease gradually with Er<sup>3+</sup> and Er<sup>3+</sup>/Yb<sup>3+</sup> ions, respectively. FTIR results showed enhancement of the crystallinity and the absence of carbonates upon increasing Yb<sup>3+</sup> ions concentration from 0.75 up to 1 mol%. The dielectric and conductivity properties were found to be enhanced by the nature and the concentration of the lanthanide element (Er<sup>3+</sup>, Yb<sup>3+</sup>) in the BTSO host lattice. The Curie temperature (T<sub>c</sub>) shifted to a lower value from 117 for BTSO: 0.5Er to 93 for BTSO: 0.5Er/1Yb and the permittivity <em>ε’</em> increased from 3972 to 6071, so BTSO: 0.5Er/1Yb good crystalline material candidate for capacitors application due to its higher permittivity.
文摘Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.
文摘The effect of Nd^(3+) on the photosynthesis and the growth of spinach was studied. The results show that Nd^(3+) improves the growth of spinach and increases chlorophyll content and photosynthetic rate. UV-Vis spectrum indicates that the Soret band of chl-a in spinach with NdCl_3 treatment is blue shifted by 2 nm, and the Q band is red shifted by 1 nm, and the ratio of Soret band intensity and Q band intensity increases. FT-IR spectra show that the peak of porphyrin ring in chl-a of spinach with NdCl_3 treatment is widened, suggesting that the formation of Nd^(3+)-chl-a. Treated by NdCl_3, the fluorescence emission peak of PSⅡ in spinach leaves is blue shifted by 12 nm and the intensity declines obviously, indicating that Nd^(3+) is bound to the PSⅡ protein-pigment complex and the electron transfer rate increases.
基金Project supported by the National Natural Science Foundation of China (30470150) and Natural Science Foundation(03KJB180122) of Jiangsu Province
文摘The effects of Ce^3 + on the chloroplast senescence of spinach under light were studied. The results show that when the chloroplasts are illuminated for 1, 5 and 10 min with 500 μmol·cm^-2· min^-1 light intensity, the oxygen evolution rate is rapidly increased. When the chloroplasts are treated for 20, 30 and 40 min with 500 μmol·cm^-2·min^-1 light intensity, the oxygen evolution rate is gradually decreased. While spinach is treated with 16μmol·L^-1 Ce^3+ , the rate of oxygen evolution of chloroplasts in different illumination time (1,5, 10, 20, 30, 40 min) is higher than that of control, and when illumination time is over 10 min, the reduction of the oxygen evolution rate is lower than that of control. It suggests that Ce^3+ treatment can protect chloroplasts from aging for long time illumination. The mechanism research results indicate that Ce^3+ treatment can significantly decrease accumulation of active oxygen free radicals such as O2^- and H2O2, and reduce the level of malondialdehyde (MDA), and maintain stability of membrane structure of chloroplast under light. It is shown that the redox took place between cerium and free radicals, which are eliminated in a large number, leading to protect the membrane fiom peroxidating.
文摘Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.
文摘Eu 3+ ions were incorporated in sol and gel by a sol gel processing using 3 glycidoxypropyltrimethoxysilane (CH 2OCHCH 2O(CH 2) 3Si(OCH 3) 3, GPTMS) and ethyl silicate (TEOS) as precursors. The basic chemical physical properties such as DTA curve, FT IR spectra and specific surface area were recorded. The characteristics of their optical spectra were measured and investigated. The results indicate that the emission intensity of Eu 3+ ion in ormocer is much higher and the global line width is wider than those in SiO 2 gel. The relationship between the composition and structure of gels and the fluorescence intensity and width were discussed. The obtained ormocer shows good mechanical strength, which can be cut and polished in machine without broken.
文摘Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.
文摘Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er^(3+) were calculated by Judd-Ofelt theory, and stimulated emission cross-section of (()~4I_(13/2))→(()~4I_(15/2)) transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er^(3+)-doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er^(3+)-doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.
文摘The three host glasses doped with Yb 3+ were prepared by means of conventional melt quenching technology, and the influence on physical and spectral properties of phosphate glass due to addition of B2O3 was investigated and compared with silicate glass. The results show that due to the existence of OH- impurities which induce the non-radiative route, the fluorescence lifetime of phosphate glass is shorter, so silicate glass has better spectral properties than phosphate glass. Silicate glass has more excellent thermal-mechanical properties than phosphate glass, but with the addition of B2O3, thermal-mechanical properties of phosphate glass are improved greatly without fluorescence quenching effect, and this kind of borophosphate glass will be the candidate to be used in high average power solid state laser.
基金This work is financially supported by the Project of Science and Technology of Zhejiang Province (No. 011066)Project of Education Committee of Zhejiang Province (No. 20010231)the Doctoral Science Foundation of Ningbo City (No. 02J20101-12)the Personal Bureau of Ningbo City, China (No. 2002182).
文摘The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emission spectra of the above Cr^3+-incorporated solid-state materials were recorded. The technical parameters for growing high-quality Cr^3+:BeAl2O4 and Cr^3+:LINbO3 crystals were obtained. The results indicate that the optical absorption and fluorescence spectra of Cr^3+ show quite a few differences in various matrixes. The sharp line emissions were observed in the Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 crystals. The crystal-field parameters (Dq) for Cr^3+. in different matrixes were calculated from their corresponding spectra. It is indicated that Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 belong to the high-field site crystal, while the Cr^3+ ZnO-Al2O3-SiO2 glass and glass-ceramic belong to the weak-field site crystal.
文摘Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses
基金Project supported by State Natural Science Foundation (20161001)Natural Science Foundation of Inner Mongolia Autonomous Region Science Commission (200508010206)
文摘In the preparation of this precursor tetraethlortho silicate (TEOS), sodium tungstate, ethyl alcohol, HCl and RECl3(RE=Eu,Tb) were mixed and then heated at 800 ℃ for 2 h, leading to a luminescent compound. The structure of the materials was characterized by TG-DTA and IR analysis, and the results indicate that the materials were in SiO2 network structure. Three-dimensional fluorescence spectra was used to characterize the luminescent properties of the materials. The luminescence property of doped and un-doped Eu3+or Tb3+ and Na2WO4 in silica materials were prepared and measured. The results show that good energy transfer from WO2-4 to Eu3+ ion, sensitized the luminescence intensity of Eu3+ remarkably. Tb3+ ion incorporated silica materials expressed the inverse energy transition from Tb3+ to WO2-4, however, we got the materials with homogeneous green blue fluorescent light. Finally, the energy transfer of WO2-4 and Eu3+, WO2-4 and Tb3+ were explained by energy levels diagram.
文摘Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO_2 is 0~50%(molar fraction), Gd_2O_3 is 0~30%(molar fraction) and B_2O_3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO_2 and 30% Gd_2O_3 , or at the contents of 60%(molar fraction) SiO_2 and 30%(molar fraction) B_2O_3. There is no glass phase formed in other glass components. Glass forming ability for Gd_2O_3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt_((2,4,6)) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σ_e^(peak) product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er^(3+)-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.
基金the State High Technology Program for Inertial Confinement Fusion and National Science Foundation (No.59823003)Project of United Foundation (No.10676019)Youth Scientist Fund of Shandong Province (Nos. 2004BS04022 and 03BS079)
文摘During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different concentration of Fe^3+ dopant by traditional temperaturereduction method and "point-seed" rapid growth method. Furthermore, we examined the light scatter and measured the transmission of these KDP crystals. It is found that the dopant of Fe^3+ ion can improve the stability of the KDP growth solution when its concentration is less than 30 ppm. The effects of Fe^3+ ion on the growth habit and optical properties of KDP crystal are also obvious.
基金Supported by the National Natural Science Foundation of China (10732100)the Natural Science Foundation of Heilongjiang Province (B200903)
文摘The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized by Czochralski method in air atmosphere. X-ray diffraction shows that the obtained crystal is a single phase of LiNbO3 and the rare-earth ions occupied the Li^+ or Nb^5+ sites instead of the interstitial sites. Under 980 nm excitation, green and red emission bands due to the Ho^3+ (^5S2, ^5F4)/^5I8 and Ho^3+ ^5F5/^5I8 energy transitions are observed in these samples, respectively. Power dependence studies on these samples with different Yb^3+ dopant concentrations indicate that the red and green emissions are based on a two-photon process. The intensities of the red and green upconversion fluorescence increase with Yb3+ ions of 0-2.0 mol% because of an increased Yb^3+ sensitization, but decrease at higher concentrations owing to the back-energy transfer between the Yb^3+ and Ho^3+ ions.
文摘The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The results show that, due to the existence of OH^-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass. Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect. This kind of borophosphate glass can be used in high average power solid state lasers.