期刊文献+
共找到2,057篇文章
< 1 2 103 >
每页显示 20 50 100
Local dose-dense chemotherapy for triple-negative breast cancer via minimally invasive implantation of 3D printed devices 被引量:1
1
作者 Noehyun Myung Hyun-Wook Kang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期69-85,共17页
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap... Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency. 展开更多
关键词 Dose-dense chemotherapy Triple-negative breast cancer 3D printing Pulsatile release Local drug delivery systems
下载PDF
Digital light processing based multimaterial 3D printing:challenges,solutions and perspectives
2
作者 Jianxiang Cheng Shouyi Yu +1 位作者 Rong Wang Qi Ge 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期151-174,共24页
Multimaterial(MM)3D printing shows great potential for application in metamaterials,flexible electronics,biomedical devices and robots,since it can seamlessly integrate distinctive materials into one printed structure... Multimaterial(MM)3D printing shows great potential for application in metamaterials,flexible electronics,biomedical devices and robots,since it can seamlessly integrate distinctive materials into one printed structure.Among numerous MM 3D printing technologies,digital light processing(DLP)MM 3D printing is compatible with a wide range of materials from hydrogels to ceramics,and can print MM 3D structures with high resolution,high complexity and fast speed.This paper introduces the fundamental mechanisms of DLP 3D printing,and reviews the recent advances of DLP MM 3D printing technologies with emphasis on material switching methods and material contamination issues.It also summarizes a number of typical examples of DLP MM 3D printing systems developed in the past decade,and introduces their system structures,working principles,material switching methods,residual resin removal methods,printing steps,as well as the representative structures and applications.Finally,we provide perspectives on the directions of the further development of DLP MM 3D printing technology. 展开更多
关键词 multimaterial 3D printing digital lightprocessing multimaterial 3Dstructures
下载PDF
Light-based 3D printing of stimulus-responsive hydrogels forminiature devices:recent progress and perspective
3
作者 Chen Xin Neng Xia Li Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期721-746,共26页
Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and ad... Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields. 展开更多
关键词 3D printing Stimulus-responsive hydrogels Miniature devices Shape-morphing
下载PDF
3D printing encouraging desired in-situ polypyrrole seed-polymerization for ultra-high energy density supercapacitors
4
作者 Tiantian Zhou Shangwen Ling +6 位作者 Shuxian Sun Ruoxin Yuan Ziqin Wu Mengyuan Fu Hanna He Xiaolong Li Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期117-125,I0004,共10页
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co... The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications. 展开更多
关键词 3D printing Seed-induced polymerization SUPERCAPACITOR POLYPYRROLE High energy density
下载PDF
Biomimetic 3D printing of composite structures with decreased cracking
5
作者 Fan Du Kai Li +7 位作者 Mingzhen Li Junyang Fang Long Sun Chao Wang Yexin Wang Maiqi Liu Jinbang Li Xiaoying Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期24-34,共11页
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar... The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators. 展开更多
关键词 3D printing Electrohydrodynamic jet BIOMIMETIC Structural integrity Composite scaffold
下载PDF
3D printing in space:from mechanical structures to living tissues
6
作者 Mao Mao Zijie Meng +6 位作者 Xinxin Huang Hui Zhu Lei Wang Xiaoyong Tian Jiankang He Dichen Li Bingheng Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期378-387,共10页
3D printing stands at the forefront of transforming space exploration,offering unprecedented on-demand and rapid manufacturing capabilities.It adeptly addresses challenges such as mass reduction,intricate component fa... 3D printing stands at the forefront of transforming space exploration,offering unprecedented on-demand and rapid manufacturing capabilities.It adeptly addresses challenges such as mass reduction,intricate component fabrication,and resource constraints.Despite the obstacles posed by microgravity and extreme environments,continual advancements underscore the pivotal role of 3D printing in aerospace science.Beyond its primary function of producing space structures,3D printing contributes significantly to progress in electronics,biomedicine,and resource optimization.This perspective delves into the technological advantages,environmental challenges,development status,and opportunities of 3D printing in space.Envisioning its crucial impact,we anticipate that 3D printing will unlock innovative solutions,reshape manufacturing practices,and foster self-sufficiency in future space endeavors. 展开更多
关键词 3D printing in space space manufacturing MICROGRAVITY
下载PDF
Investigation on mechanical properties regulation of rock-like specimens based on 3D printing and similarity quantification
7
作者 Duanyang Zhuang Zexu Ning +3 位作者 Yunmin Chen Jinlong Li Qingdong Li Wenjie Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期573-585,共13页
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti... 3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology. 展开更多
关键词 3D printing Mechanical property regulation Similarity quantification Rock analogue SANDSTONE
下载PDF
Extrusion 3D printing of carbon nanotube-assembled carbon aerogel nanocomposites with high electrical conductivity
8
作者 Lukai Wang Jing Men +4 位作者 Junzong Feng Yonggang Jiang Liangjun Li Yijie Hu Jian Feng 《Nano Materials Science》 EI CAS CSCD 2024年第3期312-319,共8页
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi... Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing. 展开更多
关键词 Carbon aerogel Extrusion 3D printing Carbon nanotube Electrical conductivity RHEOLOGY
下载PDF
Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites
9
作者 Yuan Chen Lin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期84-93,共10页
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun... In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents. 展开更多
关键词 3D printing Continuous carbon fibre MODELLING Energy absorption Negative Poisson's ratio
下载PDF
Electrospinning/3D printing-integrated porous scaffold guides oral tissue regeneration in beagles
10
作者 Li Yuan Chen Yuan +5 位作者 Jiawei Wei Shue Jin Yi Zuo Yubao Li Xinjie Liang Jidong Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期1000-1017,共18页
The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nev... The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues. 展开更多
关键词 ELECTROSPINNING 3D printing Gradient porous scaffold Oral tissue regeneration
下载PDF
Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures
11
作者 Huiyuan Wang Siqin Liu +12 位作者 Xincheng Yin Mingming Huang Yanzhe Fu Xun Chen Chao Wang Jingyong Sun Xin Yan Jianmin Han Jiping Yang Zhijian Wang Lizhen Wang Yubo Fan Jiebo Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期247-260,共14页
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting... 3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more. 展开更多
关键词 3D printing polar coordinate line projection LIGHT-CURING tubular structure radially multi-material structures
下载PDF
3D printing of poly(ethyleneimine)-functionalized Mg-Al mixed metal oxide monoliths for direct air capture of CO_(2)
12
作者 Qingyang Shao Zhuozhen Gan +4 位作者 Bingyao Ge Xuyi Liu Chunping Chen Dermot O’Hare Xuancan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期491-500,共10页
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t... Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics. 展开更多
关键词 3D printing Mixed metal oxides Amine functionalization Structured adsorbent Direct air capture
下载PDF
Effect of fractures on mechanical behavior of sand powder 3D printing rock analogue under triaxial compression
13
作者 LI Pi-mao JIANG Li-shuai +5 位作者 WEN Zhi-jie WU Chao-lei YANG Yi-ming PENG Xiao-han WU Quan-sen WU Quan-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2703-2716,共14页
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S... In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state. 展开更多
关键词 sand powder 3D printing triaxial compression confining pressure fracture geometry mechanical behavior
下载PDF
Rapid fabrication of modular 3D paper-basedmicrofluidic chips using projection-based 3D printing
14
作者 Mingjun Xie Zexin Fu +5 位作者 Chunfei Lu Sufan Wu Lei Pan Yong He Yi Sun Ji Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期611-623,共13页
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho... Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications. 展开更多
关键词 Paper-based microfluidic chip Projection-based 3D printing(PBP) Modularization Cell culture
下载PDF
3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies
15
作者 Qinniu Lv Zilin Peng +5 位作者 Haoran Pei Xinxing Zhang Yinghong Chen Huarong Zhang Xu Zhu Shulong Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期533-552,共20页
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl... The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions. 展开更多
关键词 Polymeric component 3D printing Tunable electromagnetic shielding Periodic porous metamaterials Honeycomb pore structure
下载PDF
Method of fabricating artificial rock specimens based on extrusion free forming(EFF)3D printing
16
作者 Xiaomeng Shi Tingbang Deng +2 位作者 Sen Lin Chunjiang Zou Baoguo Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1455-1466,共12页
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura... Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation. 展开更多
关键词 Artificial rock 3D printing Extrusion free forming(EFF) Similarity analysis Mechanical properties
下载PDF
Physical model test and application of 3D printing rock-like specimens to laminated rock tunnels
17
作者 Yun Tian Weizhong Chen +3 位作者 Hongming Tian Xiaoyun Shu Linkai He Man Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4625-4637,共13页
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t... Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks. 展开更多
关键词 Bedding plane Three-dimensional(3D)printing Physical model test Non-uniform deformation Digital imaging correlation(DIC)
下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
18
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
Prospects of 3D Printing Technology in Dental Medicine
19
作者 Ye Sun 《Journal of Clinical and Nursing Research》 2024年第6期398-403,共6页
With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and fut... With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area. 展开更多
关键词 3D printing technology Dental medicine Dental implants CROWNS Bridges ORTHODONTICS Maxillofacial surgery Tissue engineering Drug delivery systems Personalized dental prosthetics Surgical planning
下载PDF
Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models 被引量:21
20
作者 Peng Liu Yang Ju +3 位作者 Pathegama G. Ranjith Zemin Zheng Li Wang Ayai Wanniarachchi 《International Journal of Coal Science & Technology》 EI 2016年第3期284-294,共11页
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy... The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks. 展开更多
关键词 Hydrofracturing cracks Visual representation and characterization Transparentized structures Heterogeneous rock 3D printing Coupled effects of heterogeneity and geostress
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部