Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative re...BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation.However,the effect of surgery on patients'left coronary artery and its vascular reconstruction have not been deeply discussed.With the development of medical imaging technology,3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery.AIM To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery(LCA)preserved.METHODS A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital.All patients underwent LLAR of rectal cancer with the LCA preserved,and the intraoperative and postoperative data were complete.The patients were divided into a reconstruction group(72 patients)and a nonreconstruction group(74 patients)according to whether 3D vascular reconstruction was performed before surgery.The clinical features,operation conditions,complications,pathological results and postoperative recovery of the two groups were collected and compared.RESULTS A total of 146 patients with rectal cancer were included in the study,including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group.There were 47 males and 25 females in the reconstruction group,aged(59.75±6.2)years,with a body mass index(BMI)(24.1±2.2)kg/m^(2),and 51 males and 23 females in the nonreconstruction group,aged(58.77±6.1)years,with a BMI(23.6±2.7)kg/m^(2).There was no significant difference in the baseline data between the two groups(P>0.05).In the submesenteric artery reconstruction group,35 patients were type Ⅰ,25 patients were type Ⅱ,11 patients were type Ⅲ,and 1 patient was type Ⅳ.There were 37 type Ⅰ patients,24 type Ⅱ patients,12 type Ⅲ patients,and 1 type Ⅳ patient in the nonreconstruction group.There was no significant difference in arterial typing between the two groups(P>0.05).The operation time of the reconstruction group was 162.2±10.8 min,and that of the nonreconstruction group was 197.9±19.1 min.Compared with that of the reconstruction group,the operation time of the two groups was shorter,and the difference was statistically significant(t=13.840,P<0.05).The amount of intraoperative blood loss was 30.4±20.0 mL in the reconstruction group and 61.2±26.4 mL in the nonreconstruction group.The amount of blood loss in the reconstruction group was less than that in the control group,and the difference was statistically significant(t=-7.930,P<0.05).The rates of anastomotic leakage(1.4%vs 1.4%,P=0.984),anastomotic hemorrhage(2.8%vs 4.1%,P=0.672),and postoperative hospital stay(6.8±0.7 d vs 7.0±0.7 d,P=0.141)were not significantly different between the two groups.CONCLUSION Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss.Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation.展开更多
BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of givi...BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of giving a stereoscopic view,which makes accurate resection of HCCA possible.AIM To establish precise resection of HCCA based on eOrganmap 3D reconstruction and full quantification technology.METHODS We retrospectively analyzed the clinical data of 73 patients who underwent HCCA surgery.All patients were assigned to two groups.The traditional group received traditional 2D imaging planning before surgery(n=35).The eOrganmap group underwent 3D reconstruction and full quantitative technical planning before surgery(n=38).The preoperative evaluation,anatomical classification of hilar hepatic vessels,indicators associated with surgery,postoperative complications,liver function,and stress response indexes were compared between the groups.RESULTS Compared with the traditional group,the amount of intraoperative blood loss in the eOrganmap group was lower,the operating time and postoperative intestinal ventilation time were shorter,and R0 resection rate and lymph node dissection number were higher(P<0.05).The total complication rate in the eOrganmap group was 21.05%compared with 25.71%in the traditional group(P>0.05).The levels of total bilirubin,Albumin(ALB),aspartate transaminase,and alanine transaminase in the eOrganmap group were significantly different from those in the traditional group(intergroup effect:F=450.400,79.120,95.730,and 13.240,respectively;all P<0.001).Total bilirubin,aspartate transaminase,and alanine transaminase in both groups showed a decreasing trend with time(time effect:F=30.270,17.340,and 13.380,respectively;all P<0.001).There was an interaction between patient group and time(interaction effect:F=3.072,2.965,and 2.703,respectively;P=0.0282,0.032,and 0.046,respectively);ALB levels in both groups tended to increase with time(time effect:F=22.490,P<0.001),and there was an interaction effect between groups and time(interaction effect:F=4.607,P=0.004).In the eOrganmap group,there was a high correlation between the actual volume of intraoperative liver specimen resection and the volume of preoperative virtual liver resection(t=0.916,P<0.001).CONCLUSION The establishment of accurate laparoscopic resection of hilar cholangiocarcinoma based on preoperative eOrganmap 3D reconstruction and full quantization technology can make laparoscopic resection of hilar cholangiocarcinoma more accurate and safe.展开更多
As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m...As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.Howev...BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.However,their clinical applications are associated with a series of complications,such as recurrence(10%-24%)and infection(0.5%-9.0%).In contrast,3D-printed meshes have significantly reduced the postoperative complications in patients.They have also shortened operating time and minimized the loss of mesh materials.In this study,we used the myopectineal orifice(MPO)data obtained from preoperative computer tomography(CT)-based 3D reconstruction for the production of 3D-printed biologic meshes.AIM To investigate the application of multislice spiral CT-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery.METHODS We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019.This study included 30 males and 30 females,with a mean age of 40±5.6 years.Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients.Anatomic points were set for the purpose of measurement based on the definition of MPO:A:The pubic tubercle;B:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis,C:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament,D:Intersection of the iliopsoas muscle and the inguinal ligament,and E:Intersection of the iliopsoas muscle and the superior pubic ramus.The distance between the points was measured.All preoperative and intraoperative data were analyzed using the t test.Differences with P<0.05 were considered significant in comparative analysis.RESULTS The distance between points AB,AC,BC,DE,and AE based on preoperative and intraoperative data was 7.576±0.212 cm vs 7.573±0.266 cm,7.627±0.212 cm vs 7.627±0.212 cm,7.677±0.229 cm vs 7.567±0.786 cm,7.589±0.204 cm vs 7.512±0.21 cm,and 7.617±0.231 cm vs 7.582±0.189 cm,respectively.All differences were not statistically significant(P>0.05).CONCLUSION The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region.This technique can provide precise data for the production of 3D-printed biologic meshes.展开更多
AIM:To assess the effect of experimentally induced anisometropia on binocularity in normal adults with glassesfree three-dimensional(3D)technique.METHODS:Totally 54 healthy medical students with normal binocularity in...AIM:To assess the effect of experimentally induced anisometropia on binocularity in normal adults with glassesfree three-dimensional(3D)technique.METHODS:Totally 54 healthy medical students with normal binocularity in the cross-sectional study were enrolled.Anisometropia was induced by placing trail lenses over the right eye,in 0.5 D steps including lenses of-0.5,-1,-1.5,-2,-2.5 D(hyperopic anisometropia)and lenses of+0.5,+1,+1.5,+2,+2.5 D(myopic anisometropia).The glasses-free 3D technique was used to evaluated not only fine stereopsis,but also coarse stereopsis,dynamic stereopsis,foveal suppression,and peripheral suppression in these subjects.One-way analysis of variance was used to compare quantitative data such as fine stereopsis,coarse stereopsis.Pearson’s Chi-square test was performed to compare categorical data such as dynamic stereopsis,foveal suppression and peripheral suppression.RESULTS:The subjects showed a statistically significant decline in fine stereopsis,coarse stereopsis,and dynamic stereopsis with increasing levels of anisometropia(P<0.001).Binocularity was af fected when induced anisometropia was more than 1 D(P<0.05).Foveal suppression and peripheral suppression were evident and increased in proportion to anisometropia(P<0.001).CONCLUSION:The relatively low degrees of anisometropia may have a potentially significant effect on high-grade binocular interaction.The mechanisms underlying the defect of binocularity seem to involve not only foveal suppression,but also peripheral suppression.展开更多
Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficul...Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficult to achieve in the correct capacity.To date,no reports have focused on methods of combining fat with implanted prostheses for breast reconstruction.Using a newly designed bionic ink(i.e.,polyether F127 diacrylate(F127DA)&poly(ethylene glycol)diacrylate(PEGDA))and projection-based three-dimensional bioprinting(PBP),we report the development of a new method for printing porous prostheses.PEGDA was used to improve the printing precision of the prosthesis by increasing the gel point of F127DA and reducing the impact of external temperature.The compression modulus of the printed prosthesis was very close to that of prostheses currently used in clinical practice and to that of natural breasts.Finally,stromal vascular fraction gel(SVF-gel),a human fat extract,was injected into the pores of the synthesized prostheses to prepare a prosthesis mixed with adipose tissue.These were implanted subcutaneously in nude mice to observe their biological performance.After 14 and 28 days of observation,the prosthesis showed good biocompatibility,and adipose tissues grew well in and around the prosthesis.This result shows that a porous prosthesis containing pre-placed adipose tissues is a promising breast reconstruction material.展开更多
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional...At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for ...Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement pattern...The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.展开更多
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
3D reconstruction and 2D observation were conducted to characterize the microstructure of the castings produced through high pressure die casting with different parameters.Our results indicate that shrinkage pores gen...3D reconstruction and 2D observation were conducted to characterize the microstructure of the castings produced through high pressure die casting with different parameters.Our results indicate that shrinkage pores generally co-existed with externally solidified crystals(ESCs).In specimen produced without fast slow shot speed,big net-shrinkage pores accompanied with ESCs were found in the center of the specimen.When the casting pressurization was introduced,the shrinkage pores gathered to the specimen center and became much less due to the optimization of melt feeding.Much more porosity was found near the gate rather than in the middle of the rod bar,especially gas pores.Thefilling process simulation reveals that the middle position of the bars wasfirstlyfilled and followed by the near gate position accompanied with one intense turbulentflow.展开更多
Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot an...Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot and ankle fractures展开更多
To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting(HPDC) AE44 magnesium alloy, 3D reconstruction and 2D characterization were carried out on the HP...To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting(HPDC) AE44 magnesium alloy, 3D reconstruction and 2D characterization were carried out on the HPDC castings produced with different process parameters(low slow-shot speed, fast slow-shot speed, solidification pressure). Microstructural characterization revealed that the formation of shrinkage pores are closely related to ESCs, which were mainly controlled by the low slow-shot speed in shot sleeve(ESCs growth time) and fast slow-shot speed into the die cavity(distribution of ESCs). In addition, solidification pressure can significantly reduce the shrinkage porosity in the center by improving the feeding capacity of liquid metal. Tensile fracture revealed that the tearing ridge is mainly evolved from the slip band of ESCs. The quantity and distribution of ESCs determine the fracture mode of castings. The relationship between mechanical properties of castings and the morphology of ESCs and porosity is also statistically discussed.展开更多
BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperati...BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperative 3D model reconstruction and the use of intravenous indocyanine green fluorescent before surgery for real-time navigation with fluorescent display to guide the surgical dissection and prevention of from injury to vessels and biliary tract.CASE SUMMARY Here we report the successful short-and long-term outcomes after one year following LDPPHR for a 60-year lady who had an uneventful recovery and was discharged home one week after the surgery.CONCLUSION There was no bile leakage or pancreatic leakage or delayed gastric emptying.The histopathology report showed multiple cysts in the pancreatic head and localized pancreatic intraepithelial tumor lesions.The resected margin was free of tumor.展开更多
This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real...This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation.However,the effect of surgery on patients'left coronary artery and its vascular reconstruction have not been deeply discussed.With the development of medical imaging technology,3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery.AIM To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery(LCA)preserved.METHODS A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital.All patients underwent LLAR of rectal cancer with the LCA preserved,and the intraoperative and postoperative data were complete.The patients were divided into a reconstruction group(72 patients)and a nonreconstruction group(74 patients)according to whether 3D vascular reconstruction was performed before surgery.The clinical features,operation conditions,complications,pathological results and postoperative recovery of the two groups were collected and compared.RESULTS A total of 146 patients with rectal cancer were included in the study,including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group.There were 47 males and 25 females in the reconstruction group,aged(59.75±6.2)years,with a body mass index(BMI)(24.1±2.2)kg/m^(2),and 51 males and 23 females in the nonreconstruction group,aged(58.77±6.1)years,with a BMI(23.6±2.7)kg/m^(2).There was no significant difference in the baseline data between the two groups(P>0.05).In the submesenteric artery reconstruction group,35 patients were type Ⅰ,25 patients were type Ⅱ,11 patients were type Ⅲ,and 1 patient was type Ⅳ.There were 37 type Ⅰ patients,24 type Ⅱ patients,12 type Ⅲ patients,and 1 type Ⅳ patient in the nonreconstruction group.There was no significant difference in arterial typing between the two groups(P>0.05).The operation time of the reconstruction group was 162.2±10.8 min,and that of the nonreconstruction group was 197.9±19.1 min.Compared with that of the reconstruction group,the operation time of the two groups was shorter,and the difference was statistically significant(t=13.840,P<0.05).The amount of intraoperative blood loss was 30.4±20.0 mL in the reconstruction group and 61.2±26.4 mL in the nonreconstruction group.The amount of blood loss in the reconstruction group was less than that in the control group,and the difference was statistically significant(t=-7.930,P<0.05).The rates of anastomotic leakage(1.4%vs 1.4%,P=0.984),anastomotic hemorrhage(2.8%vs 4.1%,P=0.672),and postoperative hospital stay(6.8±0.7 d vs 7.0±0.7 d,P=0.141)were not significantly different between the two groups.CONCLUSION Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss.Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation.
基金Key R&D Program of Hebei Province,No.223777101D.
文摘BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of giving a stereoscopic view,which makes accurate resection of HCCA possible.AIM To establish precise resection of HCCA based on eOrganmap 3D reconstruction and full quantification technology.METHODS We retrospectively analyzed the clinical data of 73 patients who underwent HCCA surgery.All patients were assigned to two groups.The traditional group received traditional 2D imaging planning before surgery(n=35).The eOrganmap group underwent 3D reconstruction and full quantitative technical planning before surgery(n=38).The preoperative evaluation,anatomical classification of hilar hepatic vessels,indicators associated with surgery,postoperative complications,liver function,and stress response indexes were compared between the groups.RESULTS Compared with the traditional group,the amount of intraoperative blood loss in the eOrganmap group was lower,the operating time and postoperative intestinal ventilation time were shorter,and R0 resection rate and lymph node dissection number were higher(P<0.05).The total complication rate in the eOrganmap group was 21.05%compared with 25.71%in the traditional group(P>0.05).The levels of total bilirubin,Albumin(ALB),aspartate transaminase,and alanine transaminase in the eOrganmap group were significantly different from those in the traditional group(intergroup effect:F=450.400,79.120,95.730,and 13.240,respectively;all P<0.001).Total bilirubin,aspartate transaminase,and alanine transaminase in both groups showed a decreasing trend with time(time effect:F=30.270,17.340,and 13.380,respectively;all P<0.001).There was an interaction between patient group and time(interaction effect:F=3.072,2.965,and 2.703,respectively;P=0.0282,0.032,and 0.046,respectively);ALB levels in both groups tended to increase with time(time effect:F=22.490,P<0.001),and there was an interaction effect between groups and time(interaction effect:F=4.607,P=0.004).In the eOrganmap group,there was a high correlation between the actual volume of intraoperative liver specimen resection and the volume of preoperative virtual liver resection(t=0.916,P<0.001).CONCLUSION The establishment of accurate laparoscopic resection of hilar cholangiocarcinoma based on preoperative eOrganmap 3D reconstruction and full quantization technology can make laparoscopic resection of hilar cholangiocarcinoma more accurate and safe.
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the National Natural Science Foundation of China(No.11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02).
文摘As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金Supported by the Shanxi Provincial Key Research and Development Program,No.201903D321175.
文摘BACKGROUND Hernia is a common condition requiring abdominal surgery.The current standard treatment for hernia is tension-free repair using meshes.Globally,more than 200 new types of meshes are licensed each year.However,their clinical applications are associated with a series of complications,such as recurrence(10%-24%)and infection(0.5%-9.0%).In contrast,3D-printed meshes have significantly reduced the postoperative complications in patients.They have also shortened operating time and minimized the loss of mesh materials.In this study,we used the myopectineal orifice(MPO)data obtained from preoperative computer tomography(CT)-based 3D reconstruction for the production of 3D-printed biologic meshes.AIM To investigate the application of multislice spiral CT-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery.METHODS We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019.This study included 30 males and 30 females,with a mean age of 40±5.6 years.Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients.Anatomic points were set for the purpose of measurement based on the definition of MPO:A:The pubic tubercle;B:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis,C:Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament,D:Intersection of the iliopsoas muscle and the inguinal ligament,and E:Intersection of the iliopsoas muscle and the superior pubic ramus.The distance between the points was measured.All preoperative and intraoperative data were analyzed using the t test.Differences with P<0.05 were considered significant in comparative analysis.RESULTS The distance between points AB,AC,BC,DE,and AE based on preoperative and intraoperative data was 7.576±0.212 cm vs 7.573±0.266 cm,7.627±0.212 cm vs 7.627±0.212 cm,7.677±0.229 cm vs 7.567±0.786 cm,7.589±0.204 cm vs 7.512±0.21 cm,and 7.617±0.231 cm vs 7.582±0.189 cm,respectively.All differences were not statistically significant(P>0.05).CONCLUSION The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region.This technique can provide precise data for the production of 3D-printed biologic meshes.
基金Supported by Sichuan Science and Technology Program (No.23NSFSC0856)。
文摘AIM:To assess the effect of experimentally induced anisometropia on binocularity in normal adults with glassesfree three-dimensional(3D)technique.METHODS:Totally 54 healthy medical students with normal binocularity in the cross-sectional study were enrolled.Anisometropia was induced by placing trail lenses over the right eye,in 0.5 D steps including lenses of-0.5,-1,-1.5,-2,-2.5 D(hyperopic anisometropia)and lenses of+0.5,+1,+1.5,+2,+2.5 D(myopic anisometropia).The glasses-free 3D technique was used to evaluated not only fine stereopsis,but also coarse stereopsis,dynamic stereopsis,foveal suppression,and peripheral suppression in these subjects.One-way analysis of variance was used to compare quantitative data such as fine stereopsis,coarse stereopsis.Pearson’s Chi-square test was performed to compare categorical data such as dynamic stereopsis,foveal suppression and peripheral suppression.RESULTS:The subjects showed a statistically significant decline in fine stereopsis,coarse stereopsis,and dynamic stereopsis with increasing levels of anisometropia(P<0.001).Binocularity was af fected when induced anisometropia was more than 1 D(P<0.05).Foveal suppression and peripheral suppression were evident and increased in proportion to anisometropia(P<0.001).CONCLUSION:The relatively low degrees of anisometropia may have a potentially significant effect on high-grade binocular interaction.The mechanisms underlying the defect of binocularity seem to involve not only foveal suppression,but also peripheral suppression.
基金This work was supported by the National Key Research andDevelopment Program of China(No.2018YFA0703000)the National Natural Science Foundation of China(Nos.T2121004,52235007,and 82203602)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22H160020 to JWThis work was also supported by Start-up Funding of Zhejiang Provincial People’s Hospital(No.ZRY2021A001 to JW)Basic Scientific Research Funds of Department of Education of Zhejiang Province(No.KYQN202109 to JW).
文摘Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficult to achieve in the correct capacity.To date,no reports have focused on methods of combining fat with implanted prostheses for breast reconstruction.Using a newly designed bionic ink(i.e.,polyether F127 diacrylate(F127DA)&poly(ethylene glycol)diacrylate(PEGDA))and projection-based three-dimensional bioprinting(PBP),we report the development of a new method for printing porous prostheses.PEGDA was used to improve the printing precision of the prosthesis by increasing the gel point of F127DA and reducing the impact of external temperature.The compression modulus of the printed prosthesis was very close to that of prostheses currently used in clinical practice and to that of natural breasts.Finally,stromal vascular fraction gel(SVF-gel),a human fat extract,was injected into the pores of the synthesized prostheses to prepare a prosthesis mixed with adipose tissue.These were implanted subcutaneously in nude mice to observe their biological performance.After 14 and 28 days of observation,the prosthesis showed good biocompatibility,and adipose tissues grew well in and around the prosthesis.This result shows that a porous prosthesis containing pre-placed adipose tissues is a promising breast reconstruction material.
基金supported by the National Natural Science Foundation of China(No.81171731)the Project of Chengdu Science and Technology Bureau(Nos.2021-YF05-01619-SN and 2021-RC05-00022-CG)+2 种基金the Science and Technology Project of Tibet Autonomous Region(Nos.XZ202202YD0013C and XZ201901-GB-08)the Sichuan Science and Technology Program(No.2022YFG0066)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYJC21026,ZYGD21001 and ZYJC21077).
文摘At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901 and 2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495 and 51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2021A1515012286)Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(Grant No.2022L3049).
文摘Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
文摘The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.
基金financially supported by the National Natural Science Foundation of China (No. 52175284)the State Key Lab of Advanced Metals and Materials (2021-ZD08)technical support of BL13W1 Beamline in Shanghai Synchrotron Radiation Facility (SSRF) and Gaomi Xiangyu company
文摘3D reconstruction and 2D observation were conducted to characterize the microstructure of the castings produced through high pressure die casting with different parameters.Our results indicate that shrinkage pores generally co-existed with externally solidified crystals(ESCs).In specimen produced without fast slow shot speed,big net-shrinkage pores accompanied with ESCs were found in the center of the specimen.When the casting pressurization was introduced,the shrinkage pores gathered to the specimen center and became much less due to the optimization of melt feeding.Much more porosity was found near the gate rather than in the middle of the rod bar,especially gas pores.Thefilling process simulation reveals that the middle position of the bars wasfirstlyfilled and followed by the near gate position accompanied with one intense turbulentflow.
文摘Objective To investigate the effect of computer aided 3D simulation technique for treating complicated foot and ankle fractures precisely.Methods From November 2007 to August 2009,255 patients with complicated foot and ankle fractures
基金financially supported by the Fundamental Research Funds for the Central Universities (M22JBMC0060)the National Natural Science Foundation of China (No.52175284)the State Key Lab of Advanced Metals and Materials (No.2021-ZD08)。
文摘To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting(HPDC) AE44 magnesium alloy, 3D reconstruction and 2D characterization were carried out on the HPDC castings produced with different process parameters(low slow-shot speed, fast slow-shot speed, solidification pressure). Microstructural characterization revealed that the formation of shrinkage pores are closely related to ESCs, which were mainly controlled by the low slow-shot speed in shot sleeve(ESCs growth time) and fast slow-shot speed into the die cavity(distribution of ESCs). In addition, solidification pressure can significantly reduce the shrinkage porosity in the center by improving the feeding capacity of liquid metal. Tensile fracture revealed that the tearing ridge is mainly evolved from the slip band of ESCs. The quantity and distribution of ESCs determine the fracture mode of castings. The relationship between mechanical properties of castings and the morphology of ESCs and porosity is also statistically discussed.
文摘BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperative 3D model reconstruction and the use of intravenous indocyanine green fluorescent before surgery for real-time navigation with fluorescent display to guide the surgical dissection and prevention of from injury to vessels and biliary tract.CASE SUMMARY Here we report the successful short-and long-term outcomes after one year following LDPPHR for a 60-year lady who had an uneventful recovery and was discharged home one week after the surgery.CONCLUSION There was no bile leakage or pancreatic leakage or delayed gastric emptying.The histopathology report showed multiple cysts in the pancreatic head and localized pancreatic intraepithelial tumor lesions.The resected margin was free of tumor.
基金This work was supported in part by the National Natural Science Foundation of China under Grant U20A20225,61833013in part by Shaanxi Provincial Key Research and Development Program under Grant 2022-GY111.
文摘This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.