This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two iso...This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two isotropic operators are non-equal quantized andthresholded in an angle, Edge features are extracted after passing a preemphasis transferfunction which can equalize, the noise affection. Binary edge images are decomposed into apyramid structure which is stored and searched using llliffe’s location method. Corre-sponding points are used to determine the range data using triangulation based on an improvedTrivedi’s formula. In calibration the authors set the optical axes of the two cameras parallelto simplify the calculation, A 3 rd order Householder transform is used to solve the compati-ble coupled equations.展开更多
As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concep...As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.展开更多
In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The...In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.展开更多
文摘This paper deals with a binocular 3-D computer vision system based on the hierarchicalmatching of edge features, Frei and Chen operator is used to extract the edge. The averagegradients of an image obtained by two isotropic operators are non-equal quantized andthresholded in an angle, Edge features are extracted after passing a preemphasis transferfunction which can equalize, the noise affection. Binary edge images are decomposed into apyramid structure which is stored and searched using llliffe’s location method. Corre-sponding points are used to determine the range data using triangulation based on an improvedTrivedi’s formula. In calibration the authors set the optical axes of the two cameras parallelto simplify the calculation, A 3 rd order Householder transform is used to solve the compati-ble coupled equations.
基金the National Natural Science Foundationof China(No.31760345).
文摘As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.
基金wsupported by the Thailand Research Fund and Solimac Automation Co.,Ltd.under the Research and Researchers for Industry Program(RRI)under Grant No.MSD56I0098Office of the Higher Education Commission under the National Research University Project of Thailand
文摘In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.