Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ...This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.展开更多
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce...An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass...Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.展开更多
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and opti...The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.展开更多
Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practic...Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.展开更多
The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is un...The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling sta...Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.展开更多
Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th...Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.展开更多
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a...Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.展开更多
Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D ...Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area.展开更多
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ...Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.展开更多
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud...The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.展开更多
Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making i...Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.展开更多
The microstructure of(CrFe)_7C_3 has been studied with scanning tunneling microscopy.It shows that a carbide consists of colonies which are full of stacking faults. The stacking faults in one colony are parallel while...The microstructure of(CrFe)_7C_3 has been studied with scanning tunneling microscopy.It shows that a carbide consists of colonies which are full of stacking faults. The stacking faults in one colony are parallel while those in different colonies lie at angle with each other.展开更多
In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate condit...In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly ...Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
文摘This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.
基金supported by the National "Eleventh Five-Year" Forestry Support Program of China (No2006BAD03A1603)
文摘An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
文摘Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.
基金ACKNOWLEDGMENT This work was supported by the Key Science Foundation of Education Ministry of China and the Anhui Science Foundation.
文摘The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.
基金This work was supported by the National Natural Science Foundation of China(52102302,51807146,and 22179021)the Young Talent Support Plan of Xi'an Jiaotong University(Grant No.DQ6J011)+2 种基金Natural Science Foundation of Shaanxi Province(2023-JC-QN-0115)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23313)the Fundamental Research Funds for the Central Universities(xyz012023165).
文摘Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.
基金Samsung Research Fundings&Incubation Center of Samsung Electronics(Grant No.SRFCMA1702-01)Y.-M.K acknowledges partial support from the National Research Foundation of Korea(NRF)(Grant No.2023R1A2C2002403)funded by the Korean government in KoreaA.Borisevich acknowledges support from FaCT,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Science,Collaboratives Research Division.
文摘The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金funded by the Science and Technology Development Fund,Macao SAR(File no.0052/2021/AGJ,0027/2023/AMJ,0083/2023/ITP2 and 0107/2023/AFJ)the Multi-Year Research Grants(MYRG2022-00063-IAPME,MYRG-GRG2023-00230-IAPME-UMDF)from the University of Macao+1 种基金the Guangdong Science and Technology Plan(2022A0505020022)the Major Science and Technology Research and Development Project of Jiangxi Province(20223AAE01003)。
文摘Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.
基金supported by National Natural Science Foundation of China (Grant No. 50905094)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044204, Grant No. 2009AA044205)China Postdoctoral Science Foundation (Grant No. 20080440378, Grant No. 200902097)
文摘Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.
基金founded by the National Natural Science Foundation of China (No. 41071273)the Doctoral Program Foundation of Institutions of Higher Education of China (No. 20090095110002)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6B35)Relevant radar data were provided by the German Aerospace Centre TerraSAR-X Science Plan (LAN1425 and LAN1173)
文摘Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3800100 and 2021YFB3800101)the National Natural Science Foundation of China(62004089,U2001217,and U19A2089)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515110439,2019B1515120083,and2022A1515011218)the Shenzhen Science and Technology Program(JCYJ20190809150811504 and KQTD2015033110182370)the HKRGC General Research Funds(16312216)the Shenzhen&Hong Kong Joint Research Program(SGLH20180622092406130)the Shenzhen Engineering Research and Development Center for Flexible Solar Cel s Project funding from Shenzhen Development and Reform Committee(2019-126)the Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee(JCYJ20200109141014474)the Guangdong-Hong Kong-Macao Joint Laboratory(2019B121205001)
文摘Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.
基金supported by the Key Research&Development Program of Yunnan Province(Grant numbers 202103AA080017,202203AE140011).
文摘The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.
基金supported by the National Natural Science Foundation of China(No.12188101,No.22122301,No.22033003,No.91745201,No.91945301,No.92145302,and No.92061112)the Fundamental Research Funds for the Central Universities(20720220011)+1 种基金the National Key Research and Devel-opment Program of China(2018YF A0208600)the Tencent Foundation for XPLORER PRIZE.
文摘Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.
文摘The microstructure of(CrFe)_7C_3 has been studied with scanning tunneling microscopy.It shows that a carbide consists of colonies which are full of stacking faults. The stacking faults in one colony are parallel while those in different colonies lie at angle with each other.
文摘In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
基金Supported by the National Natural Science Foundation of Chinathe National Key Research and Development Program of China under Grant No 2016YFA0300203
文摘Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.