The efficacy of nitrification inhibitors depends on soil properties and environmental conditions. The nitrification inhibitor 3.4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil t...The efficacy of nitrification inhibitors depends on soil properties and environmental conditions. The nitrification inhibitor 3.4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil to study its effectiveness as influenced by inhibitor concentration, application form, and soil matric potential. DMPP was applied with concentrations up to 34.6 mg DMPP kg^-1 soil as solution or as ammonium-sulfate/ammonium-nitrate granules formulated with DMPP. DMPP inhibited the oxidation of ammonium in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. When applied as solution, increasing DMPP concentrations up to 7 mg DMPP kg^-1 soil had no influence on the inhibition. The effectiveness of DMPP formulated as fertilizer granules was superior to the liquid application of DMPP and NH4^+, particularly in the loamy soil. Without DMPP, a decline in soil matric potential down to -600 kPa decreased nitrification in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. DMPP was most effective in the sandy loam particularly under conditions of higher soil moisture, i.e., under conditions favorable for nitrate leaching.展开更多
In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The ...In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NHaNO3) or urea could reduce NO3^--N leaching significantly, whereas ammonium (NH4^+-N) leaching increased slightly. In case of total N (NO3^--N+NH4^+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4^+ -N and low levels of NO3^--N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.展开更多
To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, an...To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, and quality of cabbage (Brassica campastrisL. ssp. pekinesis), two field trials were carried out under various soil-climaticconditions in Jinhua City and Xinchang County, Zhejiang Province of China in 2002.Results showed that DMPP could increase the mean yield by+2.0tha-1 in Jinhua, +5.5tha-1 inXinchang, decrease NO3--N content by -9.4% in Jinhua, -7.3% in Xinchang and improvenutritional quality by increasing vitamin C (VC), soluble sugar, K, Fe, Zn contentssignificantly.展开更多
An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular ure...An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.展开更多
DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and e...DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.展开更多
基金the Federal Ministry of Education and Research, Bonn, Germany (No423-40003-0339812)BASF, Ludwigshafen, Germany
文摘The efficacy of nitrification inhibitors depends on soil properties and environmental conditions. The nitrification inhibitor 3.4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil to study its effectiveness as influenced by inhibitor concentration, application form, and soil matric potential. DMPP was applied with concentrations up to 34.6 mg DMPP kg^-1 soil as solution or as ammonium-sulfate/ammonium-nitrate granules formulated with DMPP. DMPP inhibited the oxidation of ammonium in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. When applied as solution, increasing DMPP concentrations up to 7 mg DMPP kg^-1 soil had no influence on the inhibition. The effectiveness of DMPP formulated as fertilizer granules was superior to the liquid application of DMPP and NH4^+, particularly in the loamy soil. Without DMPP, a decline in soil matric potential down to -600 kPa decreased nitrification in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. DMPP was most effective in the sandy loam particularly under conditions of higher soil moisture, i.e., under conditions favorable for nitrate leaching.
基金Project supported by the National Natural Science Foundation of China(No. 30571082)the Science and Technology Committee of ZhejiangProvince (No. 021102084)the Agriculture Department of ZhejiangProvince (No. SN 200404) and BASF Company of Germany.
文摘In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NHaNO3) or urea could reduce NO3^--N leaching significantly, whereas ammonium (NH4^+-N) leaching increased slightly. In case of total N (NO3^--N+NH4^+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4^+ -N and low levels of NO3^--N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.
基金supported by the National Natural Science Foundation of China(30370838)Science and Technology Committee of Zhejiang Province,China(021102084)BASF Company of Germany.
文摘To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, and quality of cabbage (Brassica campastrisL. ssp. pekinesis), two field trials were carried out under various soil-climaticconditions in Jinhua City and Xinchang County, Zhejiang Province of China in 2002.Results showed that DMPP could increase the mean yield by+2.0tha-1 in Jinhua, +5.5tha-1 inXinchang, decrease NO3--N content by -9.4% in Jinhua, -7.3% in Xinchang and improvenutritional quality by increasing vitamin C (VC), soluble sugar, K, Fe, Zn contentssignificantly.
文摘An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.
文摘DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.