The development of a pseudo-one pot synthesis of 3(5),4-dinitropyrazole enabled us to use it as a starting material for energetic plasticisers. Its acidic proton allowed simple derivatisation on one of the ring nitr...The development of a pseudo-one pot synthesis of 3(5),4-dinitropyrazole enabled us to use it as a starting material for energetic plasticisers. Its acidic proton allowed simple derivatisation on one of the ring nitrogens. The thermal characteristics of two derivatives were evaluated. For instance, the N-allyl compound was a liquid with very low glass transition temperature, whereas the N-propargyl compound was a sticky solid at ambient temperature. The two compounds were both thermally stable according to STANAG 4582.展开更多
A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determi...A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.展开更多
Nitro-heterocyclic compounds are good candidates for developing new insensitive high-en- ergy explosives with low melting points. A new nitro-heterocyclic compound, 3,4-dinitropyrazole (DNP), was synthesized. With l...Nitro-heterocyclic compounds are good candidates for developing new insensitive high-en- ergy explosives with low melting points. A new nitro-heterocyclic compound, 3,4-dinitropyrazole (DNP), was synthesized. With low melting point, it can be used as an explosive. The compound was characterized by IR, elemental analysis, mass spectrometry and nuclear magnetic resonance spectroscopy. Its thermal decomposition and phase change were also analyzed with DSC and its melting point was 85 - 87 ℃. Because of its low melting point and good thermal stability, DNP could be used for the design of novel insensitive melt-cast explosive.展开更多
文摘The development of a pseudo-one pot synthesis of 3(5),4-dinitropyrazole enabled us to use it as a starting material for energetic plasticisers. Its acidic proton allowed simple derivatisation on one of the ring nitrogens. The thermal characteristics of two derivatives were evaluated. For instance, the N-allyl compound was a liquid with very low glass transition temperature, whereas the N-propargyl compound was a sticky solid at ambient temperature. The two compounds were both thermally stable according to STANAG 4582.
基金the National Science Foundation of China(No.21173163 and No. 21303133)
文摘A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.
基金Supported by the Ministerial Youth Foundation (hzy0803104-3)
文摘Nitro-heterocyclic compounds are good candidates for developing new insensitive high-en- ergy explosives with low melting points. A new nitro-heterocyclic compound, 3,4-dinitropyrazole (DNP), was synthesized. With low melting point, it can be used as an explosive. The compound was characterized by IR, elemental analysis, mass spectrometry and nuclear magnetic resonance spectroscopy. Its thermal decomposition and phase change were also analyzed with DSC and its melting point was 85 - 87 ℃. Because of its low melting point and good thermal stability, DNP could be used for the design of novel insensitive melt-cast explosive.