期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多维神经网络深度特征融合的鸟鸣识别算法 被引量:2
1
作者 吉训生 江昆 谢捷 《信号处理》 CSCD 北大核心 2022年第4期844-853,共10页
为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的... 为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的过拟合。之后,将预训练的VGG Style作为特征提取器对每一段鸟鸣提取深度特征。鉴于不同维度模型的互补性,该文提出分别使用1维CNN-LSTM、2维VGG Style与3维DenseNet121模型作为特征提取器生成高级特征。对于1维CNN-LSTM,使用小波分解作为池化方法,分别对鸟鸣时、频域进行9层小波分解,生成多层LBP特征以获取更丰富的时频信息。最后,对CNN-LSTM与DenseNet121的全连接层进行优化,减少模型参数,提高实时性。实验结果表明,通过融合多维神经网络的深度特征,使用浅层分类器在含有43种鸟类的CLO-43SD数据集中,获得了93.89%的平衡准确率,相较于最新的Mel-VGG与Subnet-CNN融合模型,平衡准确率提高了7.58%。 展开更多
关键词 鸟鸣识别 1CNN-LSTM 2VGG Style 3维densenet121 深度特征融合
下载PDF
基于深度学习优化YOLOV3算法的芳纶带检测算法研究 被引量:3
2
作者 杨建伟 涂兴子 +2 位作者 梅峰漳 李亚宁 范鑫杰 《中国矿业》 北大核心 2020年第4期67-72,共6页
矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(yo... 矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(you only look once unified real-time object detection,YOLO)。在现场的测试中,YOLOV3算法对小目标的识别精度比较低,敏感度不够,本文优化了YOLOV3算法,网络信息的传输过程,由ResNet(残差网络)替换为特征表述更为完整的DenseNet(密集连接网络),同时运用了卷积降维进行优化,减少检测时间。在现场经过比对,优化后的YOLOV3算法相较于通过频域变换和Otsu算法,检测精度提高了26%,对比没有优化的YOLOV3算法,检测精度提高了15%,通过在现场的实验,该方法有效地改善了对于芳纶带小目标的瑕疵检测。 展开更多
关键词 表面缺陷 YOLOV3算法 密集连接网络(densenet) 卷积降
下载PDF
KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network
3
作者 Sardar Hasen Ali Maiwan Bahjat Abdulrazzaq 《Computers, Materials & Continua》 SCIE EI 2024年第4期429-448,共20页
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo... Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset. 展开更多
关键词 CNN models Kurdish handwritten recognition KurdSet dataset Arabic handwritten recognition densenet121 model InceptionV3 model Xception model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部