目的探讨非小细胞肺癌(NSCLC)组织3'-脱氧-3'-18F-氟代胸苷(18F-FLT)PET显像所示18F-FLT高摄取区与肿瘤细胞高增殖区的一致性。方法选择12例初治、接受根治性手术切除治疗的NSCLC患者。术前3 d行18F-FLT PET CT检查,以最大标准...目的探讨非小细胞肺癌(NSCLC)组织3'-脱氧-3'-18F-氟代胸苷(18F-FLT)PET显像所示18F-FLT高摄取区与肿瘤细胞高增殖区的一致性。方法选择12例初治、接受根治性手术切除治疗的NSCLC患者。术前3 d行18F-FLT PET CT检查,以最大标准摄取值(SUVmax)的80%为阈值勾画FLT的高摄取区。术后取得完整的肿块并按在体方向还原,4 mm层厚制作肺癌病理大切片并行HE染色及Ki-67染色,Ki-67指数>20%的区域为高表达区,PET图像与病理图像进行配准后比较高摄取区与高表达区位置是否相同。结果 12例患者成功制作病理切片并顺利阅片。5例18F-FLT高摄取区与Ki-67高表达区一致。结论 NSCLC组织18F-FLT高摄取区与Ki-67高表达所代表的肿瘤细胞高增殖区并非完全一致。展开更多
Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed t...Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[^18F]-fluoro-2-deoxy-D-glucose (^18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[^18F]-fluorothymidine (^18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the ^18F-FDG was greater than the ratio using 18F-FLT (P 〈 0.05). The Ki-67 expression showed a significant positive correlation with the ^18F-FLT binding ratio (r = 0.824, P〈 0.01). The tumor-to-nontumor uptake ratio of ^18F-FDG imaging in xenografts was higher than that of ^18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of ^18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of ^18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of ^18F-FDG and ^18F-FLT (r = 0.658, P〈 0.05 and r = 0.724, P〈 0.01, respectively). Conclusions: The ^18F-FDG uptake ratio is higher than that of ^18F-FLT in A549 cells at the cellular level.^18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.展开更多
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81271607), and the National Postdoctoral Science Foundation of China (No. 2015M572810).
文摘Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[^18F]-fluoro-2-deoxy-D-glucose (^18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[^18F]-fluorothymidine (^18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the ^18F-FDG was greater than the ratio using 18F-FLT (P 〈 0.05). The Ki-67 expression showed a significant positive correlation with the ^18F-FLT binding ratio (r = 0.824, P〈 0.01). The tumor-to-nontumor uptake ratio of ^18F-FDG imaging in xenografts was higher than that of ^18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of ^18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of ^18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of ^18F-FDG and ^18F-FLT (r = 0.658, P〈 0.05 and r = 0.724, P〈 0.01, respectively). Conclusions: The ^18F-FDG uptake ratio is higher than that of ^18F-FLT in A549 cells at the cellular level.^18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.