设G=(V,E)是一个连通图,边集S(?)E是一个3-限制性边割,如果G-S是不连通的并且G-S的每个分支至少有三个点.图G的3-限制性边连通度λ_3(G)是G中最小的一个3-限制性边割的基数.图G是λ_3(G)连通的,如果3-限制性边割存在.G是λ_3-最优的,如...设G=(V,E)是一个连通图,边集S(?)E是一个3-限制性边割,如果G-S是不连通的并且G-S的每个分支至少有三个点.图G的3-限制性边连通度λ_3(G)是G中最小的一个3-限制性边割的基数.图G是λ_3(G)连通的,如果3-限制性边割存在.G是λ_3-最优的,如果λ_3(G)=ξ_3(G),其中ξ_3(G)=min{|[U,(?)]|:U(?)V,|U|=3 and G[U]是连通的).G[U]表示V的子集U的导出子图,(?)=V\U表示U的补.[U,(?)]是一条边的一个端点在U中另一个端点在(?)中的边的集合.本文给出了不含三角形的图是λ_3-最优的一些充分条件.展开更多
Let G be a k-regular connected graph of order at least six. If G has girth three, its 3-restricted edge connectivity λ3(G) ≤3k-6. The equality holds when G is a cubic or 4-regular connected vertex-transitive graph w...Let G be a k-regular connected graph of order at least six. If G has girth three, its 3-restricted edge connectivity λ3(G) ≤3k-6. The equality holds when G is a cubic or 4-regular connected vertex-transitive graph with the only exception that G is a 4-regular graph with λ3(G) = 4. Furthermore, λ3(G) = 4 if and only if G contains K4 as its subgraph.展开更多
基金supported by NSFC (No.10671165)XJEDU (No.2004G05).
文摘设G=(V,E)是一个连通图,边集S(?)E是一个3-限制性边割,如果G-S是不连通的并且G-S的每个分支至少有三个点.图G的3-限制性边连通度λ_3(G)是G中最小的一个3-限制性边割的基数.图G是λ_3(G)连通的,如果3-限制性边割存在.G是λ_3-最优的,如果λ_3(G)=ξ_3(G),其中ξ_3(G)=min{|[U,(?)]|:U(?)V,|U|=3 and G[U]是连通的).G[U]表示V的子集U的导出子图,(?)=V\U表示U的补.[U,(?)]是一条边的一个端点在U中另一个端点在(?)中的边的集合.本文给出了不含三角形的图是λ_3-最优的一些充分条件.
文摘Let G be a k-regular connected graph of order at least six. If G has girth three, its 3-restricted edge connectivity λ3(G) ≤3k-6. The equality holds when G is a cubic or 4-regular connected vertex-transitive graph with the only exception that G is a 4-regular graph with λ3(G) = 4. Furthermore, λ3(G) = 4 if and only if G contains K4 as its subgraph.