A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two ...A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for...Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.展开更多
The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties su...The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.展开更多
The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal ...The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.展开更多
Ethane conversion to ethylene and aromatics over Zn/zeolite catalysts is a promising technology for efficient exploitation of light alkanes. However, the reaction faces two major hurdles including the limited ethane c...Ethane conversion to ethylene and aromatics over Zn/zeolite catalysts is a promising technology for efficient exploitation of light alkanes. However, the reaction faces two major hurdles including the limited ethane conversion due to thermodynamics and the drastic catalyst deactivation by kinetical coke accumulation. Here we present a route to improve ethane conversion using a composite catalyst, involving Zn/HZSM-5 for ethane dehydroaromatization and CaMnO3-δperovskite for in situ selective hydrogen oxidation. The in situ H2 consumption shifts ethane dehydrogenation equilibrium to the desired side and can obviously increase the yield of target product. Furthermore, it is found that the in situ generated H2 O through H2 combustion can significantly suppress the coke formation and consequently enhance the stability of the composite catalyst. After 400 min reaction, a product yield of 23% was retained over the composite catalyst, almost a threefold increase with respect to the Zn/HZSM-5 reference(8%). It is anticipated that this novel composite catalyst combined with an efficient reactor technology may improve the viability of ethane aromatization in utilization.展开更多
A series of polymer- supported Pd -Fe2O3 composite catalysts were prepared and their hydrogenation property mas investigated. It was found that the above catalysts have good catalytic hydrogenation activity for carbon...A series of polymer- supported Pd -Fe2O3 composite catalysts were prepared and their hydrogenation property mas investigated. It was found that the above catalysts have good catalytic hydrogenation activity for carbon - carbon double bonds systems and reusability. Furthermore, XPS and IR spectra shouted that active component in the composite catalysts is atomic Pd(0). An addition of a small amount of Fe2O3 has a promotive action upon hydrogenation activity of the catalysts, which indicated that there are some strong interactions (electron transfer) between Pd(0) and Fe(Ⅲ) species. Based on these results, a possible catalytic hydrogenation mechanism was also suggested.展开更多
La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cath...La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cathode of La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ was prepared on the LSGM electrolyte substrate by screen-printing method. The results of cathodic polarization measurements show that the overpotential decreases significantly when the composite cathode is used instead of the La0.8Sr0.2FeO3-δ single layer cathode. The cathodic overpotential of the composite La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ cathode is 150 mV at the current density of 0.2 A·cm-2 at 800 ℃, while the cathodic overpotential of the La0.8Sr0.2FeO3-δ single layer cathode is higher than 260 mV at the same condition. The electrochemical impedance spectroscopy was employed to investigate the polarization resistance of the cathode. The polarization resistance of the composite cathode is 1.20 Ω·cm2 in open circuit condition, while the value of the single La0.8Sr0.2FeO3-δ cathode is 1.235 Ω·cm2.展开更多
Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its mic...Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.展开更多
基金supported by the Beijing Natural Science Foundation of China(No.KZ200410772016)Academic Innovative Team Program of University in Beijing.
文摘A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
基金Project(2019YFC1907405)supported by the National Key R&D Program of ChinaProject(GJJ200809)supported by the Education Department Project Fund of Jiangxi Province,ChinaProject(2020BAB214021)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.
文摘The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.
文摘The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.
基金Financial support from the National Natural Science Foundation of China (grant 21606249, 21536005)the Director Innovation Fund of Key Laboratory of Biofuels, Chinese Academy of Sciences (grant Y57201190V)QIBEBT and Dalian National Laboratory For Clean Energy (DNL), CAS (Grant QIBEBT I201924)。
文摘Ethane conversion to ethylene and aromatics over Zn/zeolite catalysts is a promising technology for efficient exploitation of light alkanes. However, the reaction faces two major hurdles including the limited ethane conversion due to thermodynamics and the drastic catalyst deactivation by kinetical coke accumulation. Here we present a route to improve ethane conversion using a composite catalyst, involving Zn/HZSM-5 for ethane dehydroaromatization and CaMnO3-δperovskite for in situ selective hydrogen oxidation. The in situ H2 consumption shifts ethane dehydrogenation equilibrium to the desired side and can obviously increase the yield of target product. Furthermore, it is found that the in situ generated H2 O through H2 combustion can significantly suppress the coke formation and consequently enhance the stability of the composite catalyst. After 400 min reaction, a product yield of 23% was retained over the composite catalyst, almost a threefold increase with respect to the Zn/HZSM-5 reference(8%). It is anticipated that this novel composite catalyst combined with an efficient reactor technology may improve the viability of ethane aromatization in utilization.
文摘A series of polymer- supported Pd -Fe2O3 composite catalysts were prepared and their hydrogenation property mas investigated. It was found that the above catalysts have good catalytic hydrogenation activity for carbon - carbon double bonds systems and reusability. Furthermore, XPS and IR spectra shouted that active component in the composite catalysts is atomic Pd(0). An addition of a small amount of Fe2O3 has a promotive action upon hydrogenation activity of the catalysts, which indicated that there are some strong interactions (electron transfer) between Pd(0) and Fe(Ⅲ) species. Based on these results, a possible catalytic hydrogenation mechanism was also suggested.
基金This work was financially supported by the National Natural Science Foundation of China (No. 90510006) and the National High-Tech Research and Development of China (No. 2003AA302440).
文摘La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cathode of La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ was prepared on the LSGM electrolyte substrate by screen-printing method. The results of cathodic polarization measurements show that the overpotential decreases significantly when the composite cathode is used instead of the La0.8Sr0.2FeO3-δ single layer cathode. The cathodic overpotential of the composite La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ cathode is 150 mV at the current density of 0.2 A·cm-2 at 800 ℃, while the cathodic overpotential of the La0.8Sr0.2FeO3-δ single layer cathode is higher than 260 mV at the same condition. The electrochemical impedance spectroscopy was employed to investigate the polarization resistance of the cathode. The polarization resistance of the composite cathode is 1.20 Ω·cm2 in open circuit condition, while the value of the single La0.8Sr0.2FeO3-δ cathode is 1.235 Ω·cm2.
文摘Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.