The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods f...The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.展开更多
Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between ...Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between seismic waveform and high-frequency well logs is established through dynamic clustering of seismic waveform to improve the vertical and horizontal resolution of inversion results;meanwhile,by constructing the Bayesian inversion framework of different seismic facies,the real facies controlled inversion is realized.The forward model verification results show that the seismic meme inversion can realize precise prediction of 3 m thick thin interbeds,proving the rationality and high precision of the method.The application in the Daqing placanticline shows that the seismic meme inversion could identify 2 m thin interbeds,and the coincidence rates of inversion results and drilling data were more than 80%.The seismic meme inversion method can improve the accuracy of reservoir prediction and provides a useful mean for thin interbeds prediction in terrestrial basins.展开更多
文摘The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.
文摘Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between seismic waveform and high-frequency well logs is established through dynamic clustering of seismic waveform to improve the vertical and horizontal resolution of inversion results;meanwhile,by constructing the Bayesian inversion framework of different seismic facies,the real facies controlled inversion is realized.The forward model verification results show that the seismic meme inversion can realize precise prediction of 3 m thick thin interbeds,proving the rationality and high precision of the method.The application in the Daqing placanticline shows that the seismic meme inversion could identify 2 m thin interbeds,and the coincidence rates of inversion results and drilling data were more than 80%.The seismic meme inversion method can improve the accuracy of reservoir prediction and provides a useful mean for thin interbeds prediction in terrestrial basins.