A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. B...A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.展开更多
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ...The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.展开更多
A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity m...A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.展开更多
This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layer...This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.展开更多
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig...A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.展开更多
Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution...Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.展开更多
The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, whic...The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.展开更多
We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversi...We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversion using the localized quasi-linear(LQL)approximation followed by the rigorous inversion,if necessary.The LQL inversion serves to provide a fast image of the target.These results are checked by a rigorous update of the domain electric field,allowing a more accurate calculation of the predicted data.If the accuracy is poorer than desired,rigorous inversion follows,using the resulting conductivity distribution and electric field from LQL as a starting model.The rigorous inversion iteratively solves the field and domain equations,converting the non-linear inversion into a series of linear inversions.We test this method on synthetic and field data.The results of the inversion are very encouraging with respect to both the speed and the accuracy of the algorithm,showing this is a useful tool for airborne EM interpretation.展开更多
This paper describes a new method which has been developed for the solution of direct and inverse problems of 3-D compressible flows in turbomachinery.Two types of streamfunctions are proposed in the paper and the str...This paper describes a new method which has been developed for the solution of direct and inverse problems of 3-D compressible flows in turbomachinery.Two types of streamfunctions are proposed in the paper and the streamfunction-coordinate system is applied in numerical computations.The algorithm is applied to stator blades and the results are compared with experimental data,It is shown that the comparisons are very satis- factory.展开更多
As mask features scale to smaller dimensions, the so-called "3-D mask effects" which have mostly been neglected before, become important. This paper properly models the 3-D thick mask effects, and then analyses the ...As mask features scale to smaller dimensions, the so-called "3-D mask effects" which have mostly been neglected before, become important. This paper properly models the 3-D thick mask effects, and then analyses the object-based inverse lithography technique using a simulated annealing algorithm to determine the mask shapes that produce the desired on-wafer results. Evaluations against rigorous simulations show that the synthesized masks provide good image fidelity up to 0.94, and this approach gives improved accuracy and faster results than existing methods.展开更多
Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation cha...Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.展开更多
In order to simultaneously attack a target with impact angle constraint in threedimensional(3-D) space, a novel distributed cooperative guidance law for multiple missiles under directed communication topologies is pro...In order to simultaneously attack a target with impact angle constraint in threedimensional(3-D) space, a novel distributed cooperative guidance law for multiple missiles under directed communication topologies is proposed without radial velocity measurements. First, based on missiles-target 3-D relative motion equations, the multiple missiles cooperative guidance model with impact angle constraint is constructed. Then, in Line-of-Sight(LOS) direction, based on multiagent system cooperative control theory, one guidance law with directed topologies is designed with strict proof, which can guarantee finite time consensus of multiple missiles' impact times. Next, in elevation direction and azimuth direction of LOS, based on homogeneous system stability theory and integral sliding mode control theory, two guidance laws are proposed respectively with strict proof, which can guarantee LOS angles converge to desired values and LOS angular rates converge to zero in finite time. Finally, the effectiveness of the designed cooperative guidance law is demonstrated through simulation results.展开更多
Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase a...Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.展开更多
基金This work was supported in part by the Grant-in-Aid for Exploratory Research of the JSPS (No. 16656085).
文摘A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.
基金National Natural Science Foundation of China (40074010) and Natural Science Foundation of Gansu Province(ZS981-A25-011).
文摘The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.
文摘A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.
文摘This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.
文摘A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.
基金Supported by Project of Natural Science Fund of Jilin Province(No.20180101312JC)
文摘Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.
基金Project Supported by National Nature Science Foundation of China (50578034) Science and Technology Development Foundation ofDonghua University
文摘The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.
文摘We develop a new computational method for modeling and inverting frequency domain airborne electromagnetic(EM)data.Our method is based on the contraction integral equation method for forward EM modeling and on inversion using the localized quasi-linear(LQL)approximation followed by the rigorous inversion,if necessary.The LQL inversion serves to provide a fast image of the target.These results are checked by a rigorous update of the domain electric field,allowing a more accurate calculation of the predicted data.If the accuracy is poorer than desired,rigorous inversion follows,using the resulting conductivity distribution and electric field from LQL as a starting model.The rigorous inversion iteratively solves the field and domain equations,converting the non-linear inversion into a series of linear inversions.We test this method on synthetic and field data.The results of the inversion are very encouraging with respect to both the speed and the accuracy of the algorithm,showing this is a useful tool for airborne EM interpretation.
基金Project supported by the National Natural Science Fundation of China
文摘This paper describes a new method which has been developed for the solution of direct and inverse problems of 3-D compressible flows in turbomachinery.Two types of streamfunctions are proposed in the paper and the streamfunction-coordinate system is applied in numerical computations.The algorithm is applied to stator blades and the results are compared with experimental data,It is shown that the comparisons are very satis- factory.
基金Supported by the National Key Basic Research and Development(973) Program of China (No. 2006CB302700)the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList)
文摘As mask features scale to smaller dimensions, the so-called "3-D mask effects" which have mostly been neglected before, become important. This paper properly models the 3-D thick mask effects, and then analyses the object-based inverse lithography technique using a simulated annealing algorithm to determine the mask shapes that produce the desired on-wafer results. Evaluations against rigorous simulations show that the synthesized masks provide good image fidelity up to 0.94, and this approach gives improved accuracy and faster results than existing methods.
基金funded by the National Natural Science Foundation of China(41330314)Projects of Science for Earthquake Resilience(XH15049Y)+1 种基金National Science and Technology Support Program of China(2012BAK19B02,2012BAK19B03)Special Research Foundation for Seismology(201108009)
文摘Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.
基金supported by the National Natural Science Foundation of China(Nos.61603114,61673135)
文摘In order to simultaneously attack a target with impact angle constraint in threedimensional(3-D) space, a novel distributed cooperative guidance law for multiple missiles under directed communication topologies is proposed without radial velocity measurements. First, based on missiles-target 3-D relative motion equations, the multiple missiles cooperative guidance model with impact angle constraint is constructed. Then, in Line-of-Sight(LOS) direction, based on multiagent system cooperative control theory, one guidance law with directed topologies is designed with strict proof, which can guarantee finite time consensus of multiple missiles' impact times. Next, in elevation direction and azimuth direction of LOS, based on homogeneous system stability theory and integral sliding mode control theory, two guidance laws are proposed respectively with strict proof, which can guarantee LOS angles converge to desired values and LOS angular rates converge to zero in finite time. Finally, the effectiveness of the designed cooperative guidance law is demonstrated through simulation results.
基金supported by the China National Funds for Distinguished Young Scientists (Grant No.61025006)
文摘Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.