Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex...Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.展开更多
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com...This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surf...The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.展开更多
Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy f...Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.展开更多
Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 1...Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.展开更多
Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here...Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.展开更多
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradie...A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.展开更多
3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasin...3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasing personalization demand and still guarantee aesthetics.This paper proposes amethod to construct 3-D human models by applying deep learning.We calculate the location of the main slices of the human body,including the neck,chest,belly,buttocks,and the rings of the extremities,using pre-existing information.Then,on the positioning frame,we find the key points(fixed and unaltered)of these key slices and update these points tomatch the current parameters.To add points to a star slice,we use a deep learning model tomimic the form of the human body at that slice position.We use interpolation to produce sub-slices of different body sections based on the main slices to create complete body parts morphologically.We combine all slices to construct a full 3-D representation of the human body.展开更多
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since...In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.展开更多
Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first tw...Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.展开更多
MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X...MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X-Ray, endoscopy. It is a key for us to locate and track the position of a MEMS capsule in clinical applications. To solve this problem, we implemented a magnetic sensor module based on the scalar form of the magnetic dipole model,which was designed with very small size (5.2 * 2. 1 * 1.2 em) and easy to assemble to satisfy the system requirement. Here we discuss in detail the principle of magnetic dipole model, rules of selecting sensor and functions of the module. Some trials are established to test the characteristic of the module. The results of the Cm experiment demonstrates that the module follows the rules of the new magnetic dipole model form.展开更多
The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland base...The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland basement uplifts of late Miocene age.In order to analyze the geochronological evolution of the Quaternary volcanism in the region,several geologic and geophysical studies have been conducted.Nevertheless,the crust,where the SRB is located,has not been well characterized yet.Based on gravimetric and magnetic data,together with isostatic and elastic thickness analyses,we modeled the crustal structure of the area.Information obtained has allowed us to understand the crust where the SRB and the Payenia volcanic province are located.Bouguer anomalies indicate that the SRB presents higher densities to the North of Cerro Nevado and Moho calculations suggest depths for this block between 40 and 50 km.Determinations of elastic thickness would indicate that the crust supporting the San Rafael Block presents values of approximately 10 km,being enough to support the block loading.However,in the Payenia region,elastic thickness values are close to zero due to the regional temperature increase.展开更多
This paper describes a method of the computer aided garment design,and discusses 3-D humanbody,wire frame modelling,approaches of expressing and a shading model of the 3-D garment.
Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic haz...Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic hazard prediction and assessment. A 3-D physical model in conformity with real strata configuration of (mainly) the Quaternary is a prerequisite to ensure the reliability of the simulation results. In this paper, we give a detailed account of the technical scheme and process for creating a 3-D physical model in Kunming basin. The data used are synthe- sized from seismogeological data, borehole data, topographic data, digital elevation mode (DEM) data, seismic exploration results and wave velocity measurements. Strafigraphic division is based mainly on shear wave velocity, with strata sequence taken into consideration. The model construction is finally accomplished with ArcGIS and many relevant programming techniques via layer-by-layer stacking (in depth direction) of the adjacent medium interfaces (meshes). Meanwhile, a database of 3-D physical models is set up, which provides model data and parameters for strong ground motion simulation. Some processing methods and significant issues are also addressed in the paper in accordance with different types of exploration and experimental data.展开更多
Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach fo...Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.展开更多
Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistica...Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided compos- ites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.展开更多
基金Supported by Key Research and Development Project of Guangxi Pr ovince(No.AB21196028).
文摘Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards.
基金This work was supported by China Postdoctoral Science Foundation(No.2022M723391)the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)+1 种基金the Central Guiding Local Science and Technology Development Fund Project(No.YDZJSX2021B021)Shanxi Province Basic Research Plan General Project(No.202203021221294).
文摘This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
基金partially supported by the National Natural Science Foundation of China (Nos. 41864004 and 41674077)Jiangxi Provincial Academic Leaders (Youth) Training Program (No. 20204BCJL23058)Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202102)。
文摘The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.
基金supported by the National Special Plan for the 13th Five-Year Plan of China(No.2017YFC0602204-10)Independent Exploration of the Innovation Project for Graduate Students at Central South University(No.2017zzts176)+3 种基金National Natural Science Foundation of China(Nos.41574127,41404106,and 41674075)Postdoctoral Fund Projects of China(No.2017M622608)National Key R&D Program of China(No.2018YFC0603602)Natural Science Youth Fund Project of the Hunan Province,China(No.2018JJ3642)
文摘Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.
文摘Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.
文摘Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
文摘A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.
基金Funding for this study from Sai Gon University(Grant No.CSA2021–08).
文摘3-dimension(3-D)printing technology is growing strongly with many applications,one of which is the garment industry.The application of human body models to the garment industry is necessary to respond to the increasing personalization demand and still guarantee aesthetics.This paper proposes amethod to construct 3-D human models by applying deep learning.We calculate the location of the main slices of the human body,including the neck,chest,belly,buttocks,and the rings of the extremities,using pre-existing information.Then,on the positioning frame,we find the key points(fixed and unaltered)of these key slices and update these points tomatch the current parameters.To add points to a star slice,we use a deep learning model tomimic the form of the human body at that slice position.We use interpolation to produce sub-slices of different body sections based on the main slices to create complete body parts morphologically.We combine all slices to construct a full 3-D representation of the human body.
文摘In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.
基金sponsored by the National Key R&D Program of China(No.2021YFA0715100)the Shenzhen Fundamental Research Program,China(No.JCYJ20220818102601004)+1 种基金the National Natural Science Foundation of China(No.41774145)the Pre-research Project on Civil Aerospace Technologies(No.D020101)of CNSA。
文摘Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.
文摘MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X-Ray, endoscopy. It is a key for us to locate and track the position of a MEMS capsule in clinical applications. To solve this problem, we implemented a magnetic sensor module based on the scalar form of the magnetic dipole model,which was designed with very small size (5.2 * 2. 1 * 1.2 em) and easy to assemble to satisfy the system requirement. Here we discuss in detail the principle of magnetic dipole model, rules of selecting sensor and functions of the module. Some trials are established to test the characteristic of the module. The results of the Cm experiment demonstrates that the module follows the rules of the new magnetic dipole model form.
文摘The San Rafael Block(SRB)is part of one of the main retroarc volcanic provinces in southern Central Andes in Mendoza,Argentina.This block is located in the Andean foothills between the orogenic front and foreland basement uplifts of late Miocene age.In order to analyze the geochronological evolution of the Quaternary volcanism in the region,several geologic and geophysical studies have been conducted.Nevertheless,the crust,where the SRB is located,has not been well characterized yet.Based on gravimetric and magnetic data,together with isostatic and elastic thickness analyses,we modeled the crustal structure of the area.Information obtained has allowed us to understand the crust where the SRB and the Payenia volcanic province are located.Bouguer anomalies indicate that the SRB presents higher densities to the North of Cerro Nevado and Moho calculations suggest depths for this block between 40 and 50 km.Determinations of elastic thickness would indicate that the crust supporting the San Rafael Block presents values of approximately 10 km,being enough to support the block loading.However,in the Payenia region,elastic thickness values are close to zero due to the regional temperature increase.
文摘This paper describes a method of the computer aided garment design,and discusses 3-D humanbody,wire frame modelling,approaches of expressing and a shading model of the 3-D garment.
基金Urban Active Fault Detection Project sponsored by the National Development andReform Commission of China(2004-1138)National Natural Science Foundation of China(40604005)+1 种基金Joint Seismological Science Foundation of China(A07027)Key Project during the 10th Five-year Plan Period from Earthquake Administration of China(J105B-16).
文摘Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic hazard prediction and assessment. A 3-D physical model in conformity with real strata configuration of (mainly) the Quaternary is a prerequisite to ensure the reliability of the simulation results. In this paper, we give a detailed account of the technical scheme and process for creating a 3-D physical model in Kunming basin. The data used are synthe- sized from seismogeological data, borehole data, topographic data, digital elevation mode (DEM) data, seismic exploration results and wave velocity measurements. Strafigraphic division is based mainly on shear wave velocity, with strata sequence taken into consideration. The model construction is finally accomplished with ArcGIS and many relevant programming techniques via layer-by-layer stacking (in depth direction) of the adjacent medium interfaces (meshes). Meanwhile, a database of 3-D physical models is set up, which provides model data and parameters for strong ground motion simulation. Some processing methods and significant issues are also addressed in the paper in accordance with different types of exploration and experimental data.
基金Supported by the Ministerial Level Advanced Research Foundation(9140A01010411BQ01)the National Twelfth Five-Year Project(40405050303)
文摘Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.
基金Supported by the National Natural Science Foundation of China(51075031)
文摘Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided compos- ites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.