期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive Window Based 3-D Feature Selection for Multispectral Image Classification Using Firefly Algorithm 被引量:1
1
作者 M.Rajakani R.J.Kavitha A.Ramachandran 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期265-280,共16页
Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafte... Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafted feature sets are used which are not adaptive for different image domains.To overcome this,an evolu-tionary learning method is developed to automatically learn the spatial-spectral features for classification.A modified Firefly Algorithm(FA)which achieves maximum classification accuracy with reduced size of feature set is proposed to gain the interest of feature selection for this purpose.For extracting the most effi-cient features from the data set,we have used 3-D discrete wavelet transform which decompose the multispectral image in all three dimensions.For selecting spatial and spectral features we have studied three different approaches namely overlapping window(OW-3DFS),non-overlapping window(NW-3DFS)adaptive window cube(AW-3DFS)and Pixel based technique.Fivefold Multiclass Support Vector Machine(MSVM)is used for classification purpose.Experiments con-ducted on Madurai LISS IV multispectral image exploited that the adaptive win-dow approach is used to increase the classification accuracy. 展开更多
关键词 Multispectral image modifiedfirefly algorithm 3-d feature extraction feature selection multiclass support vector machine CLASSIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部