Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradie...A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.展开更多
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa...In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.展开更多
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t...Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.展开更多
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in...We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.展开更多
Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic haz...Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic hazard prediction and assessment. A 3-D physical model in conformity with real strata configuration of (mainly) the Quaternary is a prerequisite to ensure the reliability of the simulation results. In this paper, we give a detailed account of the technical scheme and process for creating a 3-D physical model in Kunming basin. The data used are synthe- sized from seismogeological data, borehole data, topographic data, digital elevation mode (DEM) data, seismic exploration results and wave velocity measurements. Strafigraphic division is based mainly on shear wave velocity, with strata sequence taken into consideration. The model construction is finally accomplished with ArcGIS and many relevant programming techniques via layer-by-layer stacking (in depth direction) of the adjacent medium interfaces (meshes). Meanwhile, a database of 3-D physical models is set up, which provides model data and parameters for strong ground motion simulation. Some processing methods and significant issues are also addressed in the paper in accordance with different types of exploration and experimental data.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground mangan...This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground manganese mine was chosen as a case study to investigate the capabilities of the presented methodology.A software package(OPTIMINE)was implemented to address the computational demand in an automated manner.Three–dimensional finite difference analyses were performed in FLAC3D and used as implicit functions to consider safety in terms of the factor of safety and room convergence.The obtained results showed that recovery could be increased from 44%to more than 80%in a safe manner.展开更多
Rockslides are one of the most common geological hazards in mountainous areas and can pose significant threats to the safety of human lives and infrastructures. Studying the dynamic fragmentation process, and fragment...Rockslides are one of the most common geological hazards in mountainous areas and can pose significant threats to the safety of human lives and infrastructures. Studying the dynamic fragmentation process, and fragment characteristics of rock blocks during rockslides is of great significance. In this study,the influences of the slope angle on the dynamic fragmentation process, damage and energy evolution,and the fragments’ flying velocity and flying angle were systematically investigated using a coupled 3D FEM-DEM method. An improved fragment search algorithm was first proposed to more effectively extract the information of the fragments after impacting. The input parameters in the numerical modeling were carefully calibrated based on the quasi-static uniaxial compression tests and the rockimpact tests. The complex fragmentation process of rock block sliding along an inclined slope was simulated. The results indicate that the fragmentation intensity gradually increases with increasing the slope angle, and the fragmentation intensity of the front region of the rock block is always higher than that of the rear region. Additionally, the slope angle can significantly affect the damage ratio, energy dissipation, and the ratio of tensile crack to shear crack during the rockslides. The number of the fragments having higher flying velocities and larger flying angles increases with increasing the slope angle,which contributes to a larger spreading distance and a wider deposition area.展开更多
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour...In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.展开更多
Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformati...Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.展开更多
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ...The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.展开更多
A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free su...A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.展开更多
Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here...Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.展开更多
A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to s...A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach fo...Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.展开更多
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
文摘A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.
文摘In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the National Natural Science Foundation of China(Grant No.41820104004)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000144).
文摘Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.
基金partially supported by the National R & D Special Fund of Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038 and 41025014)the Joint Research Collaboration Program by the Ministry of Science and Technology of China(No.2010DFA21570)
文摘We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.
基金Urban Active Fault Detection Project sponsored by the National Development andReform Commission of China(2004-1138)National Natural Science Foundation of China(40604005)+1 种基金Joint Seismological Science Foundation of China(A07027)Key Project during the 10th Five-year Plan Period from Earthquake Administration of China(J105B-16).
文摘Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic hazard prediction and assessment. A 3-D physical model in conformity with real strata configuration of (mainly) the Quaternary is a prerequisite to ensure the reliability of the simulation results. In this paper, we give a detailed account of the technical scheme and process for creating a 3-D physical model in Kunming basin. The data used are synthe- sized from seismogeological data, borehole data, topographic data, digital elevation mode (DEM) data, seismic exploration results and wave velocity measurements. Strafigraphic division is based mainly on shear wave velocity, with strata sequence taken into consideration. The model construction is finally accomplished with ArcGIS and many relevant programming techniques via layer-by-layer stacking (in depth direction) of the adjacent medium interfaces (meshes). Meanwhile, a database of 3-D physical models is set up, which provides model data and parameters for strong ground motion simulation. Some processing methods and significant issues are also addressed in the paper in accordance with different types of exploration and experimental data.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
文摘This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground manganese mine was chosen as a case study to investigate the capabilities of the presented methodology.A software package(OPTIMINE)was implemented to address the computational demand in an automated manner.Three–dimensional finite difference analyses were performed in FLAC3D and used as implicit functions to consider safety in terms of the factor of safety and room convergence.The obtained results showed that recovery could be increased from 44%to more than 80%in a safe manner.
基金supported by the National Natural Science Foundation of China (Grant Nos.52004182, 51908431)。
文摘Rockslides are one of the most common geological hazards in mountainous areas and can pose significant threats to the safety of human lives and infrastructures. Studying the dynamic fragmentation process, and fragment characteristics of rock blocks during rockslides is of great significance. In this study,the influences of the slope angle on the dynamic fragmentation process, damage and energy evolution,and the fragments’ flying velocity and flying angle were systematically investigated using a coupled 3D FEM-DEM method. An improved fragment search algorithm was first proposed to more effectively extract the information of the fragments after impacting. The input parameters in the numerical modeling were carefully calibrated based on the quasi-static uniaxial compression tests and the rockimpact tests. The complex fragmentation process of rock block sliding along an inclined slope was simulated. The results indicate that the fragmentation intensity gradually increases with increasing the slope angle, and the fragmentation intensity of the front region of the rock block is always higher than that of the rear region. Additionally, the slope angle can significantly affect the damage ratio, energy dissipation, and the ratio of tensile crack to shear crack during the rockslides. The number of the fragments having higher flying velocities and larger flying angles increases with increasing the slope angle,which contributes to a larger spreading distance and a wider deposition area.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(grant No.2014BAK03B02)Science for Earthquake Resilience(grant Nos XH16021 and XH16022Y)
文摘In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
基金Supported by the National Natural Science Foundation of China(No.41271436)
文摘Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.
基金Supported by NationalNatural Science FoundationCouncil of the People’s Republic of China (20490224)
文摘The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.
基金ACKNOWLEDGMENTS The work was supported by the National Nature Science Foundation of China (Nos.11161002 and 41001320), Natural Science Foundation of Jiangxi province (No.20114BAB201016). Thanks for the useful advices of the editors and the reviewers.
文摘A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.
文摘Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)partly supported by the National Natural Science Foundation of China(Grant No.51209112)
文摘A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金Supported by the Ministerial Level Advanced Research Foundation(9140A01010411BQ01)the National Twelfth Five-Year Project(40405050303)
文摘Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.