Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
This study presents the size-dependent nonlinear thermal postbuckling characteristics of a porous functionally graded material(PFGM) microplate with a central cutout with various shapes using isogeometric numerical te...This study presents the size-dependent nonlinear thermal postbuckling characteristics of a porous functionally graded material(PFGM) microplate with a central cutout with various shapes using isogeometric numerical technique incorporating nonuniform rational B-splines. To construct the proposed non-classical plate model, the nonlocal strain gradient continuum elasticity is adopted on the basis of a hybrid quasithree-dimensional(3D) plate theory under through-thickness deformation conditions by only four variables. By taking a refined power-law function into account in conjunction with the Touloukian scheme, the temperature-porosity-dependent material properties are extracted. With the aid of the assembled isogeometric-based finite element formulations,nonlocal strain gradient thermal postbuckling curves are acquired for various boundary conditions as well as geometrical and material parameters. It is portrayed that for both size dependency types, by going deeper in the thermal postbuckling domain, gaps among equilibrium curves associated with various small scale parameter values get lower, which indicates that the pronounce of size effects reduces by going deeper in the thermal postbuckling regime. Moreover, we observe that the central cutout effect on the temperature rise associated with the thermal postbuckling behavior in the presence of the effect of strain gradient size and absence of nonlocality is stronger compared with the case including nonlocality in absence of the strain gradient small scale effect.展开更多
Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method wa...Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method was utilized to solve two-dimensional lifting problems for the hydrofoil beneath the free surface at the air-water interface, and a lifting line theory was developed to correct three-dimensional effects of the hydrofoil with a large aspect ratio. Differing from the classical lifting theory, the main focus was on finding the three-dimensional Green function of the free surface induced by the steady motion of a system of horseshoe vortices under the free surface. Finally, numerical examples were given to show the relationship between the lift coefficient and submergence Froude numbers for 2-D and 3-D hydrofoils. If the submergence Froude number is small free surface effect will be significant registered as the increase of lift coefficient. The validity of these approaches was examined in comparison with the results calculated by other methods.展开更多
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed...In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate ...This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.展开更多
The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is a...The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is also addressed. Several distributed and localized loading conditions are considered. Loads act on the top of the plate. Bi-sinusoidal and uniform loads are taken into account for distributed loadings, while stepwise constant centric and off-centric loadings are addressed in the case of localized loadings. Analysis is performed considering plates whose length-to-thickness ratio a/h can be as high as 100 (thin plates) and as low as 2 (very thick plates). Results are obtained via several 2D plate models. Classical theories (CTs) and higher order models are applied. Those theories are based on polynomial approximation of the displacement field. Among the higher order theories (HOTs) HOTsa models account for the transverse shear deformations, while HOTs models account for both transverse shear and transverse normal deformations. LHOTs represent a local application of the higher order theories. A layerwise approach is thus assumed: by means of mathematical interfaces, the plate is considered to be made of several fictitious layers. The exact 3D solution is presented in order to determine the accuracy of the results obtained via the 2D models. In this way a hierarchy among the 2D theories is established. CTs provide highly accurate results for a/h greater than 10 in the case of distributed loadings and greater than 20 for localized loadings. Results obtained via HOTs are highly accurate in the case of very thick plates for bi-sinusoidal and centric loadings. In the case of uniform and off-centric loadings a high gradient is present in the neighborhood of the plate top. In those cases, LHOTs yield results that match the exact solution.展开更多
Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of...The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.展开更多
This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous(FGP)sandwich plates.The FGP sandwich plates consist of three layers incl...This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous(FGP)sandwich plates.The FGP sandwich plates consist of three layers including the bottom skin of homogeneous metal,the top skin of fully ceramic and the FGP core layer with uneven porosity distribution.A quadrilateral(Q4)element with nine degrees of freedom(DOFs)per node is derived and employed in analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads.The accuracy of the present finite element formulation is verified by comparing the obtained numerical results with the published results in the literature.Then,some numerical examples are performed to examine the effects of the parameters including power-law index k and porosity coefficient on the static bending response of rectangular FGP sandwich plates.In addition,a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite element method.展开更多
Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results s...Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results show that fishlike forked configurations have better locomotion performance compared with unforked plates. Based on our results, the caudal fin in carangi- form mode has greater thrust, and the lunate tail fin in thtmniform mode has higher efficiency. These findings are qualitatively con- sistent with biological observations of fish swimming. Analysis of wake topology shows that the wake of the forked plate consists of a chain of alternating reverse horseshoe-like vortical structures. These structures induce a backward jet and generate a positive thrust. Moreover, this backward jet has a more favorable direction compared with that behind an unforked plate.展开更多
Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of t...Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of this paper can be summarized as follows: The work of Feng and Shi has been extended to an elastic multi-structures with nonlinear structural element: shell in both linear and nonlinear case. Three general combinations of multi-structures have been formulated, that is, Case 1: linear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; Case 2: nonlinear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; and Case 3: the linear-nonlinear mix problem of 3-D body (nonlinear), 1-D bar/beam (linear), 2-D plates (linear) and 2-D shell (linear). From the investigation, it has proved that the higher dimensional element will have a strong influence on the lower one with the inner linkage boundaries, and also proved that solution uniqueness of elastic multi-structures is different from a single 3-D body.展开更多
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金Project supported by the Natural Science Foundation of Jiangxi Science and Technology Department(No. 20202BAB204027)。
文摘This study presents the size-dependent nonlinear thermal postbuckling characteristics of a porous functionally graded material(PFGM) microplate with a central cutout with various shapes using isogeometric numerical technique incorporating nonuniform rational B-splines. To construct the proposed non-classical plate model, the nonlocal strain gradient continuum elasticity is adopted on the basis of a hybrid quasithree-dimensional(3D) plate theory under through-thickness deformation conditions by only four variables. By taking a refined power-law function into account in conjunction with the Touloukian scheme, the temperature-porosity-dependent material properties are extracted. With the aid of the assembled isogeometric-based finite element formulations,nonlocal strain gradient thermal postbuckling curves are acquired for various boundary conditions as well as geometrical and material parameters. It is portrayed that for both size dependency types, by going deeper in the thermal postbuckling domain, gaps among equilibrium curves associated with various small scale parameter values get lower, which indicates that the pronounce of size effects reduces by going deeper in the thermal postbuckling regime. Moreover, we observe that the central cutout effect on the temperature rise associated with the thermal postbuckling behavior in the presence of the effect of strain gradient size and absence of nonlocality is stronger compared with the case including nonlocality in absence of the strain gradient small scale effect.
基金Supported by the National Natural Science Foundation of China under Grant No.50921001973 Program under Grant No. 2010CB83270
文摘Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method was utilized to solve two-dimensional lifting problems for the hydrofoil beneath the free surface at the air-water interface, and a lifting line theory was developed to correct three-dimensional effects of the hydrofoil with a large aspect ratio. Differing from the classical lifting theory, the main focus was on finding the three-dimensional Green function of the free surface induced by the steady motion of a system of horseshoe vortices under the free surface. Finally, numerical examples were given to show the relationship between the lift coefficient and submergence Froude numbers for 2-D and 3-D hydrofoils. If the submergence Froude number is small free surface effect will be significant registered as the increase of lift coefficient. The validity of these approaches was examined in comparison with the results calculated by other methods.
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
文摘In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金This research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.
文摘The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is also addressed. Several distributed and localized loading conditions are considered. Loads act on the top of the plate. Bi-sinusoidal and uniform loads are taken into account for distributed loadings, while stepwise constant centric and off-centric loadings are addressed in the case of localized loadings. Analysis is performed considering plates whose length-to-thickness ratio a/h can be as high as 100 (thin plates) and as low as 2 (very thick plates). Results are obtained via several 2D plate models. Classical theories (CTs) and higher order models are applied. Those theories are based on polynomial approximation of the displacement field. Among the higher order theories (HOTs) HOTsa models account for the transverse shear deformations, while HOTs models account for both transverse shear and transverse normal deformations. LHOTs represent a local application of the higher order theories. A layerwise approach is thus assumed: by means of mathematical interfaces, the plate is considered to be made of several fictitious layers. The exact 3D solution is presented in order to determine the accuracy of the results obtained via the 2D models. In this way a hierarchy among the 2D theories is established. CTs provide highly accurate results for a/h greater than 10 in the case of distributed loadings and greater than 20 for localized loadings. Results obtained via HOTs are highly accurate in the case of very thick plates for bi-sinusoidal and centric loadings. In the case of uniform and off-centric loadings a high gradient is present in the neighborhood of the plate top. In those cases, LHOTs yield results that match the exact solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.
文摘The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.
文摘This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous(FGP)sandwich plates.The FGP sandwich plates consist of three layers including the bottom skin of homogeneous metal,the top skin of fully ceramic and the FGP core layer with uneven porosity distribution.A quadrilateral(Q4)element with nine degrees of freedom(DOFs)per node is derived and employed in analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads.The accuracy of the present finite element formulation is verified by comparing the obtained numerical results with the published results in the literature.Then,some numerical examples are performed to examine the effects of the parameters including power-law index k and porosity coefficient on the static bending response of rectangular FGP sandwich plates.In addition,a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite element method.
基金the National Natural Science Foundation of China (Grant No. 10832010)the Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L05)the 111 Project (Grant No. B07033)
文摘Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results show that fishlike forked configurations have better locomotion performance compared with unforked plates. Based on our results, the caudal fin in carangi- form mode has greater thrust, and the lunate tail fin in thtmniform mode has higher efficiency. These findings are qualitatively con- sistent with biological observations of fish swimming. Analysis of wake topology shows that the wake of the forked plate consists of a chain of alternating reverse horseshoe-like vortical structures. These structures induce a backward jet and generate a positive thrust. Moreover, this backward jet has a more favorable direction compared with that behind an unforked plate.
文摘Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of this paper can be summarized as follows: The work of Feng and Shi has been extended to an elastic multi-structures with nonlinear structural element: shell in both linear and nonlinear case. Three general combinations of multi-structures have been formulated, that is, Case 1: linear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; Case 2: nonlinear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; and Case 3: the linear-nonlinear mix problem of 3-D body (nonlinear), 1-D bar/beam (linear), 2-D plates (linear) and 2-D shell (linear). From the investigation, it has proved that the higher dimensional element will have a strong influence on the lower one with the inner linkage boundaries, and also proved that solution uniqueness of elastic multi-structures is different from a single 3-D body.